mirror of https://github.com/THUDM/ChatGLM2-6B
Do the device_map more automaticlly for multi-GPUs
The accelerate lib provide some functions to do the device_map automaticlly. This patch use infer_auto_device_map() to relpace the hard codes which splite the mode by hand. It works well with my two GPUs(6GB-RTX3060 + 12GB-RTX3060). Signed-off-by: Alex He <heye_dev@163.com>pull/472/head
parent
80602dcae1
commit
6d895f8b25
45
utils.py
45
utils.py
|
@ -5,43 +5,6 @@ from torch.nn import Module
|
|||
from transformers import AutoModel
|
||||
|
||||
|
||||
def auto_configure_device_map(num_gpus: int) -> Dict[str, int]:
|
||||
# transformer.word_embeddings 占用1层
|
||||
# transformer.final_layernorm 和 lm_head 占用1层
|
||||
# transformer.layers 占用 28 层
|
||||
# 总共30层分配到num_gpus张卡上
|
||||
num_trans_layers = 28
|
||||
per_gpu_layers = 30 / num_gpus
|
||||
|
||||
# bugfix: 在linux中调用torch.embedding传入的weight,input不在同一device上,导致RuntimeError
|
||||
# windows下 model.device 会被设置成 transformer.word_embeddings.device
|
||||
# linux下 model.device 会被设置成 lm_head.device
|
||||
# 在调用chat或者stream_chat时,input_ids会被放到model.device上
|
||||
# 如果transformer.word_embeddings.device和model.device不同,则会导致RuntimeError
|
||||
# 因此这里将transformer.word_embeddings,transformer.final_layernorm,lm_head都放到第一张卡上
|
||||
# 本文件来源于https://github.com/THUDM/ChatGLM-6B/blob/main/utils.py
|
||||
# 仅此处做少许修改以支持ChatGLM2
|
||||
device_map = {
|
||||
'transformer.embedding.word_embeddings': 0,
|
||||
'transformer.encoder.final_layernorm': 0,
|
||||
'transformer.output_layer': 0,
|
||||
'transformer.rotary_pos_emb': 0,
|
||||
'lm_head': 0
|
||||
}
|
||||
|
||||
used = 2
|
||||
gpu_target = 0
|
||||
for i in range(num_trans_layers):
|
||||
if used >= per_gpu_layers:
|
||||
gpu_target += 1
|
||||
used = 0
|
||||
assert gpu_target < num_gpus
|
||||
device_map[f'transformer.encoder.layers.{i}'] = gpu_target
|
||||
used += 1
|
||||
|
||||
return device_map
|
||||
|
||||
|
||||
def load_model_on_gpus(checkpoint_path: Union[str, os.PathLike], num_gpus: int = 2,
|
||||
device_map: Optional[Dict[str, int]] = None, **kwargs) -> Module:
|
||||
if num_gpus < 2 and device_map is None:
|
||||
|
@ -52,7 +15,13 @@ def load_model_on_gpus(checkpoint_path: Union[str, os.PathLike], num_gpus: int =
|
|||
model = AutoModel.from_pretrained(checkpoint_path, trust_remote_code=True, **kwargs).half()
|
||||
|
||||
if device_map is None:
|
||||
device_map = auto_configure_device_map(num_gpus)
|
||||
from accelerate import infer_auto_device_map
|
||||
|
||||
device_map = infer_auto_device_map(model, no_split_module_classes=["GLMBlock"])
|
||||
# e.g. Use max_memory to set the upper limit memory size of each device.
|
||||
# Huggingface suggest to save some memory of gpu0 for some reasons.
|
||||
#device_map = infer_auto_device_map(model, max_memory={0: "4GiB", 1: "10GiB", "cpu": "30GiB"}, no_split_module_classes=["GLMBlock"])
|
||||
#print(device_map)
|
||||
|
||||
model = dispatch_model(model, device_map=device_map)
|
||||
|
||||
|
|
Loading…
Reference in New Issue