Do the device_map more automaticlly for multi-GPUs

The accelerate lib provide some functions to do the device_map
automaticlly. This patch use infer_auto_device_map() to relpace the
hard codes which splite the mode by hand.

It works well with my two GPUs(6GB-RTX3060 + 12GB-RTX3060).

Signed-off-by: Alex He <heye_dev@163.com>
pull/472/head
alexhegit 2023-08-18 00:08:24 +08:00 committed by GitHub
parent 80602dcae1
commit 6d895f8b25
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 7 additions and 38 deletions

View File

@ -5,43 +5,6 @@ from torch.nn import Module
from transformers import AutoModel
def auto_configure_device_map(num_gpus: int) -> Dict[str, int]:
# transformer.word_embeddings 占用1层
# transformer.final_layernorm 和 lm_head 占用1层
# transformer.layers 占用 28 层
# 总共30层分配到num_gpus张卡上
num_trans_layers = 28
per_gpu_layers = 30 / num_gpus
# bugfix: 在linux中调用torch.embedding传入的weight,input不在同一device上,导致RuntimeError
# windows下 model.device 会被设置成 transformer.word_embeddings.device
# linux下 model.device 会被设置成 lm_head.device
# 在调用chat或者stream_chat时,input_ids会被放到model.device上
# 如果transformer.word_embeddings.device和model.device不同,则会导致RuntimeError
# 因此这里将transformer.word_embeddings,transformer.final_layernorm,lm_head都放到第一张卡上
# 本文件来源于https://github.com/THUDM/ChatGLM-6B/blob/main/utils.py
# 仅此处做少许修改以支持ChatGLM2
device_map = {
'transformer.embedding.word_embeddings': 0,
'transformer.encoder.final_layernorm': 0,
'transformer.output_layer': 0,
'transformer.rotary_pos_emb': 0,
'lm_head': 0
}
used = 2
gpu_target = 0
for i in range(num_trans_layers):
if used >= per_gpu_layers:
gpu_target += 1
used = 0
assert gpu_target < num_gpus
device_map[f'transformer.encoder.layers.{i}'] = gpu_target
used += 1
return device_map
def load_model_on_gpus(checkpoint_path: Union[str, os.PathLike], num_gpus: int = 2,
device_map: Optional[Dict[str, int]] = None, **kwargs) -> Module:
if num_gpus < 2 and device_map is None:
@ -52,7 +15,13 @@ def load_model_on_gpus(checkpoint_path: Union[str, os.PathLike], num_gpus: int =
model = AutoModel.from_pretrained(checkpoint_path, trust_remote_code=True, **kwargs).half()
if device_map is None:
device_map = auto_configure_device_map(num_gpus)
from accelerate import infer_auto_device_map
device_map = infer_auto_device_map(model, no_split_module_classes=["GLMBlock"])
# e.g. Use max_memory to set the upper limit memory size of each device.
# Huggingface suggest to save some memory of gpu0 for some reasons.
#device_map = infer_auto_device_map(model, max_memory={0: "4GiB", 1: "10GiB", "cpu": "30GiB"}, no_split_module_classes=["GLMBlock"])
#print(device_map)
model = dispatch_model(model, device_map=device_map)