Merge branch 'THUDM:main' into main

pull/23/head
Qin Jianxiang 1 year ago committed by GitHub
commit 3fb52912a9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -165,6 +165,13 @@ cd ChatGLM2-6B
git clone https://huggingface.co/THUDM/chatglm2-6b
```
如果你从 Hugging Face Hub 上下载 checkpoint 的速度较慢,可以只下载模型实现
```Shell
GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/THUDM/chatglm2-6b
```
然后从[这里](https://cloud.tsinghua.edu.cn/d/674208019e314311ab5c/)手动下载模型参数文件,并将下载的文件替换到本地的 `chatglm2-6b` 目录下。
将模型下载到本地之后,将以上代码中的 `THUDM/chatglm2-6b` 替换为你本地的 `chatglm2-6b` 文件夹的路径,即可从本地加载模型。
模型的实现仍然处在变动中。如果希望固定使用的模型实现以保证兼容性,可以在 `from_pretrained` 的调用中增加 `revision="v1.0"` 参数。`v1.0` 是当前最新的版本号,完整的版本列表参见 [Change Log](https://huggingface.co/THUDM/chatglm2-6b#change-log)。
@ -225,6 +232,28 @@ curl -X POST "http://127.0.0.1:8000" \
"time":"2023-03-23 21:38:40"
}
```
感谢 [@hiyouga]() 实现了 OpenAI 格式的流式 API 部署,可以作为任意基于 ChatGPT 的应用的后端,比如 [ChatGPT-Next-Web](https://github.com/Yidadaa/ChatGPT-Next-Web)。可以通过运行仓库中的[openai_api.py](openai_api.py) 进行部署:
```shell
python openai_api.py
```
进行 API 调用的示例代码为
```python
import openai
if __name__ == "__main__":
openai.api_base = "http://localhost:8000/v1"
openai.api_key = "none"
for chunk in openai.ChatCompletion.create(
model="chatglm2-6b",
messages=[
{"role": "user", "content": "你好"}
],
stream=True
):
if hasattr(chunk.choices[0].delta, "content"):
print(chunk.choices[0].delta.content, end="", flush=True)
```
## 低成本部署
### 模型量化

@ -44,7 +44,8 @@ def main():
os.system(clear_command)
print("欢迎使用 ChatGLM2-6B 模型输入内容即可进行对话clear 清空对话历史stop 终止程序")
continue
count = 0
print("\nChatGLM", end="")
current_length = 0
for response, history, past_key_values in model.stream_chat(tokenizer, query, history=history,
past_key_values=past_key_values,
return_past_key_values=True):
@ -52,13 +53,9 @@ def main():
stop_stream = False
break
else:
count += 1
if count % 8 == 0:
os.system(clear_command)
print(build_prompt(history), flush=True)
signal.signal(signal.SIGINT, signal_handler)
os.system(clear_command)
print(build_prompt(history), flush=True)
print(response[current_length:], end="", flush=True)
current_length = len(response)
print("")
if __name__ == "__main__":

@ -0,0 +1,163 @@
# coding=utf-8
# Implements API for ChatGLM2-6B in OpenAI's format. (https://platform.openai.com/docs/api-reference/chat)
# Usage: python openai_api.py
# Visit http://localhost:8000/docs for documents.
import time
import torch
import uvicorn
from pydantic import BaseModel, Field
from fastapi import FastAPI, HTTPException
from contextlib import asynccontextmanager
from starlette.responses import StreamingResponse
from typing import Any, Dict, List, Literal, Optional, Union
from transformers import AutoTokenizer, AutoModel
@asynccontextmanager
async def lifespan(app: FastAPI): # collects GPU memory
yield
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
app = FastAPI(lifespan=lifespan)
class ModelCard(BaseModel):
id: str
object: str = "model"
created: int = Field(default_factory=lambda: int(time.time()))
owned_by: str = "owner"
root: Optional[str] = None
parent: Optional[str] = None
permission: Optional[list] = None
class ModelList(BaseModel):
object: str = "list"
data: List[ModelCard] = []
class ChatMessage(BaseModel):
role: Literal["user", "assistant", "system"]
content: str
class DeltaMessage(BaseModel):
role: Optional[Literal["user", "assistant", "system"]] = None
content: Optional[str] = None
class ChatCompletionRequest(BaseModel):
model: str
messages: List[ChatMessage]
temperature: Optional[float] = None
top_p: Optional[float] = None
max_length: Optional[int] = None
stream: Optional[bool] = False
class ChatCompletionResponseChoice(BaseModel):
index: int
message: ChatMessage
finish_reason: Literal["stop", "length"]
class ChatCompletionResponseStreamChoice(BaseModel):
index: int
delta: DeltaMessage
finish_reason: Optional[Literal["stop", "length"]]
class ChatCompletionResponse(BaseModel):
model: str
object: Literal["chat.completion", "chat.completion.chunk"]
choices: List[Union[ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice]]
created: Optional[int] = Field(default_factory=lambda: int(time.time()))
@app.get("/v1/models", response_model=ModelList)
async def list_models():
global model_args
model_card = ModelCard(id="gpt-3.5-turbo")
return ModelList(data=[model_card])
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
async def create_chat_completion(request: ChatCompletionRequest):
global model, tokenizer
if request.messages[-1].role != "user":
raise HTTPException(status_code=400, detail="Invalid request")
query = request.messages[-1].content
prev_messages = request.messages[:-1]
if len(prev_messages) > 0 and prev_messages[0].role == "system":
query = prev_messages.pop(0).content + query
history = []
if len(prev_messages) % 2 == 0:
for i in range(0, len(prev_messages), 2):
if prev_messages[i].role == "user" and prev_messages[i+1].role == "assistant":
history.append([prev_messages[i].content, prev_messages[i+1].content])
if request.stream:
generate = predict(query, history, request.model)
return StreamingResponse(generate, media_type="text/event-stream")
response, _ = model.chat(tokenizer, query, history=history)
choice_data = ChatCompletionResponseChoice(
index=0,
message=ChatMessage(role="assistant", content=response),
finish_reason="stop"
)
return ChatCompletionResponse(model=request.model, choices=[choice_data], object="chat.completion")
async def predict(query: str, history: List[List[str]], model_id: str):
global model, tokenizer
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(role="assistant"),
finish_reason=None
)
chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
yield "data: {}\n\n".format(chunk.json(exclude_unset=True, ensure_ascii=False))
current_length = 0
for new_response, _ in model.stream_chat(tokenizer, query, history):
if len(new_response) == current_length:
continue
new_text = new_response[current_length:]
current_length = len(new_response)
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(content=new_text),
finish_reason=None
)
chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
yield "data: {}\n\n".format(chunk.json(exclude_unset=True, ensure_ascii=False))
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(),
finish_reason="stop"
)
chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
yield "data: {}\n\n".format(chunk.json(exclude_unset=True, ensure_ascii=False))
if __name__ == "__main__":
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True).cuda()
model.eval()
uvicorn.run(app, host='0.0.0.0', port=8000, workers=1)
Loading…
Cancel
Save