mirror of https://github.com/THUDM/ChatGLM2-6B
duzx16
1 year ago
3 changed files with 71 additions and 1 deletions
@ -0,0 +1,10 @@
|
||||
首先从 [Tsinghua Cloud](https://cloud.tsinghua.edu.cn/f/e84444333b6d434ea7b0) 下载处理好的 C-Eval 数据集,解压到 `evaluation` 目录下。然后运行 |
||||
|
||||
```shell |
||||
cd evaluation |
||||
python evaluate_ceval.py |
||||
``` |
||||
|
||||
这个脚本会在C-Eval的验证集上进行预测并输出准确率。如果想要得到测试集上的结果可以将代码中的 `./CEval/val/**/*.jsonl` 改为 `./CEval/test/**/*.jsonl`,并按照 C-Eval 规定的格式保存结果并在 [官网](https://cevalbenchmark.com/) 上提交。 |
||||
|
||||
汇报的结果使用的是内部的并行测试框架,结果可能会有轻微波动。 |
@ -0,0 +1,60 @@
|
||||
import os |
||||
import glob |
||||
import re |
||||
import json |
||||
import torch |
||||
import torch.utils.data |
||||
from transformers import AutoTokenizer, AutoModel |
||||
from tqdm import tqdm |
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True) |
||||
model = AutoModel.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True).bfloat16().cuda() |
||||
|
||||
choices = ["A", "B", "C", "D"] |
||||
choice_tokens = [tokenizer.encode(choice, add_special_tokens=False)[0] for choice in choices] |
||||
|
||||
|
||||
def build_prompt(text): |
||||
return "[Round {}]\n\n问:{}\n\n答:".format(1, text) |
||||
|
||||
|
||||
extraction_prompt = '综上所述,ABCD中正确的选项是:' |
||||
|
||||
accuracy_dict, count_dict = {}, {} |
||||
with torch.no_grad(): |
||||
for entry in glob.glob("./CEval/val/**/*.jsonl", recursive=True): |
||||
dataset = [] |
||||
with open(entry, encoding='utf-8') as file: |
||||
for line in file: |
||||
dataset.append(json.loads(line)) |
||||
correct = 0 |
||||
dataloader = torch.utils.data.DataLoader(dataset, batch_size=8) |
||||
for batch in tqdm(dataloader): |
||||
texts = batch["inputs_pretokenized"] |
||||
queries = [build_prompt(query) for query in texts] |
||||
inputs = tokenizer(queries, padding=True, return_tensors="pt", truncation=True, max_length=2048).to('cuda') |
||||
outputs = model.generate(**inputs, do_sample=False, max_new_tokens=512) |
||||
intermediate_outputs = [] |
||||
for idx in range(len(outputs)): |
||||
output = outputs.tolist()[idx][len(inputs["input_ids"][idx]):] |
||||
response = tokenizer.decode(output) |
||||
intermediate_outputs.append(response) |
||||
answer_texts = [text + intermediate + "\n" + extraction_prompt for text, intermediate in |
||||
zip(texts, intermediate_outputs)] |
||||
input_tokens = [build_prompt(answer_text) for answer_text in answer_texts] |
||||
inputs = tokenizer(input_tokens, padding=True, return_tensors="pt", truncation=True, max_length=2048).to('cuda') |
||||
outputs = model(**inputs, return_last_logit=True) |
||||
logits = outputs.logits[:, -1] |
||||
logits = logits[:, choice_tokens] |
||||
preds = logits.argmax(dim=-1) |
||||
correct += (preds.cpu() == batch["label"]).sum().item() |
||||
accuracy = correct / len(dataset) |
||||
print(entry, accuracy) |
||||
accuracy_dict[entry] = accuracy |
||||
count_dict[entry] = len(dataset) |
||||
|
||||
acc_total, count_total = 0.0, 0 |
||||
for key in accuracy_dict: |
||||
acc_total += accuracy_dict[key] * count_dict[key] |
||||
count_total += count_dict[key] |
||||
print(acc_total / count_total) |
Loading…
Reference in new issue