|
|
|
|
from fastapi import FastAPI, Request
|
|
|
|
|
from transformers import AutoTokenizer, AutoModel
|
|
|
|
|
import uvicorn, json, datetime
|
|
|
|
|
import torch
|
|
|
|
|
|
|
|
|
|
DEVICE = "cuda"
|
|
|
|
|
DEVICE_ID = "0"
|
|
|
|
|
CUDA_DEVICE = f"{DEVICE}:{DEVICE_ID}" if DEVICE_ID else DEVICE
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def torch_gc():
|
|
|
|
|
if torch.cuda.is_available():
|
|
|
|
|
with torch.cuda.device(CUDA_DEVICE):
|
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
|
torch.cuda.ipc_collect()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app = FastAPI()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@app.post("/")
|
|
|
|
|
async def create_item(request: Request):
|
|
|
|
|
global model, tokenizer
|
|
|
|
|
json_post_raw = await request.json()
|
|
|
|
|
json_post = json.dumps(json_post_raw)
|
|
|
|
|
json_post_list = json.loads(json_post)
|
|
|
|
|
prompt = json_post_list.get('prompt')
|
|
|
|
|
history = json_post_list.get('history')
|
|
|
|
|
max_length = json_post_list.get('max_length')
|
|
|
|
|
top_p = json_post_list.get('top_p')
|
|
|
|
|
temperature = json_post_list.get('temperature')
|
|
|
|
|
response, history = model.chat(tokenizer,
|
|
|
|
|
prompt,
|
|
|
|
|
history=history,
|
|
|
|
|
max_length=max_length if max_length else 2048,
|
|
|
|
|
top_p=top_p if top_p else 0.7,
|
|
|
|
|
temperature=temperature if temperature else 0.95)
|
|
|
|
|
now = datetime.datetime.now()
|
|
|
|
|
time = now.strftime("%Y-%m-%d %H:%M:%S")
|
|
|
|
|
answer = {
|
|
|
|
|
"response": response,
|
|
|
|
|
"history": history,
|
|
|
|
|
"status": 200,
|
|
|
|
|
"time": time
|
|
|
|
|
}
|
|
|
|
|
log = "[" + time + "] " + '", prompt:"' + prompt + '", response:"' + repr(response) + '"'
|
|
|
|
|
print(log)
|
|
|
|
|
torch_gc()
|
|
|
|
|
return answer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True)
|
|
|
|
|
model = AutoModel.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True).cuda()
|
|
|
|
|
# 多显卡支持,使用下面三行代替上面两行,将num_gpus改为你实际的显卡数量
|
|
|
|
|
# model_path = "THUDM/chatglm2-6b"
|
|
|
|
|
# tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
|
|
|
# model = load_model_on_gpus(model_path, num_gpus=2)
|
|
|
|
|
model.eval()
|
|
|
|
|
uvicorn.run(app, host='0.0.0.0', port=8000, workers=1)
|