|
|
|
|
import os
|
|
|
|
|
import platform
|
|
|
|
|
import signal
|
|
|
|
|
from transformers import AutoTokenizer, AutoModel
|
|
|
|
|
import readline
|
|
|
|
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True)
|
|
|
|
|
model = AutoModel.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True).cuda()
|
|
|
|
|
# 多显卡支持,使用下面两行代替上面一行,将num_gpus改为你实际的显卡数量
|
|
|
|
|
# from utils import load_model_on_gpus
|
|
|
|
|
# model = load_model_on_gpus("THUDM/chatglm2-6b", num_gpus=2)
|
|
|
|
|
model = model.eval()
|
|
|
|
|
|
|
|
|
|
os_name = platform.system()
|
|
|
|
|
clear_command = 'cls' if os_name == 'Windows' else 'clear'
|
|
|
|
|
stop_stream = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def build_prompt(history):
|
|
|
|
|
prompt = "欢迎使用 ChatGLM2-6B 模型,输入内容即可进行对话,clear 清空对话历史,stop 终止程序"
|
|
|
|
|
for query, response in history:
|
|
|
|
|
prompt += f"\n\n用户:{query}"
|
|
|
|
|
prompt += f"\n\nChatGLM2-6B:{response}"
|
|
|
|
|
return prompt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def signal_handler(signal, frame):
|
|
|
|
|
global stop_stream
|
|
|
|
|
stop_stream = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
|
past_key_values, history = None, []
|
|
|
|
|
global stop_stream
|
|
|
|
|
print("欢迎使用 ChatGLM2-6B 模型,输入内容即可进行对话,clear 清空对话历史,stop 终止程序")
|
|
|
|
|
while True:
|
|
|
|
|
query = input("\n用户:")
|
|
|
|
|
if query.strip() == "stop":
|
|
|
|
|
break
|
|
|
|
|
if query.strip() == "clear":
|
|
|
|
|
past_key_values, history = None, []
|
|
|
|
|
os.system(clear_command)
|
|
|
|
|
print("欢迎使用 ChatGLM2-6B 模型,输入内容即可进行对话,clear 清空对话历史,stop 终止程序")
|
|
|
|
|
continue
|
|
|
|
|
print("\nChatGLM:", end="")
|
|
|
|
|
current_length = 0
|
|
|
|
|
for response, history, past_key_values in model.stream_chat(tokenizer, query, history=history,
|
|
|
|
|
past_key_values=past_key_values,
|
|
|
|
|
return_past_key_values=True):
|
|
|
|
|
if stop_stream:
|
|
|
|
|
stop_stream = False
|
|
|
|
|
break
|
|
|
|
|
else:
|
|
|
|
|
print(response[current_length:], end="", flush=True)
|
|
|
|
|
current_length = len(response)
|
|
|
|
|
print("")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
main()
|