mirror of https://github.com/THUDM/ChatGLM-6B
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
54 lines
2.0 KiB
54 lines
2.0 KiB
import os |
|
from typing import Dict, Tuple, Union, Optional |
|
|
|
from torch.nn import Module |
|
from transformers import AutoModel |
|
|
|
|
|
def auto_configure_device_map(num_gpus: int) -> Dict[str, int]: |
|
# transformer.word_embeddings 占用1层 |
|
# transformer.final_layernorm 和 lm_head 占用1层 |
|
# transformer.layers 占用 28 层 |
|
# 总共30层分配到num_gpus张卡上 |
|
num_trans_layers = 28 |
|
per_gpu_layers = 30 / num_gpus |
|
|
|
# bugfix: 在linux中调用torch.embedding传入的weight,input不在同一device上,导致RuntimeError |
|
# windows下 model.device 会被设置成 transformer.word_embeddings.device |
|
# linux下 model.device 会被设置成 lm_head.device |
|
# 在调用chat或者stream_chat时,input_ids会被放到model.device上 |
|
# 如果transformer.word_embeddings.device和model.device不同,则会导致RuntimeError |
|
# 因此这里将transformer.word_embeddings,transformer.final_layernorm,lm_head都放到第一张卡上 |
|
device_map = {'transformer.word_embeddings': 0, |
|
'transformer.final_layernorm': 0, 'lm_head': 0} |
|
|
|
used = 2 |
|
gpu_target = 0 |
|
for i in range(num_trans_layers): |
|
if used >= per_gpu_layers: |
|
gpu_target += 1 |
|
used = 0 |
|
assert gpu_target < num_gpus |
|
device_map[f'transformer.layers.{i}'] = gpu_target |
|
used += 1 |
|
|
|
return device_map |
|
|
|
|
|
def load_model_on_gpus(checkpoint_path: Union[str, os.PathLike], num_gpus: int = 2, |
|
device_map: Optional[Dict[str, int]] = None, **kwargs) -> Module: |
|
if num_gpus < 2 and device_map is None: |
|
model = AutoModel.from_pretrained(checkpoint_path, trust_remote_code=True, **kwargs).half().cuda() |
|
else: |
|
from accelerate import dispatch_model |
|
|
|
model = AutoModel.from_pretrained(checkpoint_path, trust_remote_code=True, **kwargs).half() |
|
|
|
if device_map is None: |
|
device_map = auto_configure_device_map(num_gpus) |
|
|
|
model = dispatch_model(model, device_map=device_map) |
|
|
|
return model |
|
|
|
|
|
|