mirror of https://github.com/THUDM/ChatGLM-6B
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
166 lines
5.6 KiB
166 lines
5.6 KiB
import os, sys |
|
|
|
import gradio as gr |
|
import mdtex2html |
|
|
|
import torch |
|
import transformers |
|
from transformers import ( |
|
AutoConfig, |
|
AutoModel, |
|
AutoTokenizer, |
|
AutoTokenizer, |
|
DataCollatorForSeq2Seq, |
|
HfArgumentParser, |
|
Seq2SeqTrainingArguments, |
|
set_seed, |
|
) |
|
|
|
from arguments import ModelArguments, DataTrainingArguments |
|
|
|
|
|
model = None |
|
tokenizer = None |
|
|
|
"""Override Chatbot.postprocess""" |
|
|
|
|
|
def postprocess(self, y): |
|
if y is None: |
|
return [] |
|
for i, (message, response) in enumerate(y): |
|
y[i] = ( |
|
None if message is None else mdtex2html.convert((message)), |
|
None if response is None else mdtex2html.convert(response), |
|
) |
|
return y |
|
|
|
|
|
gr.Chatbot.postprocess = postprocess |
|
|
|
|
|
def parse_text(text): |
|
"""copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/""" |
|
lines = text.split("\n") |
|
lines = [line for line in lines if line != ""] |
|
count = 0 |
|
for i, line in enumerate(lines): |
|
if "```" in line: |
|
count += 1 |
|
items = line.split('`') |
|
if count % 2 == 1: |
|
lines[i] = f'<pre><code class="language-{items[-1]}">' |
|
else: |
|
lines[i] = f'<br></code></pre>' |
|
else: |
|
if i > 0: |
|
if count % 2 == 1: |
|
line = line.replace("`", "\`") |
|
line = line.replace("<", "<") |
|
line = line.replace(">", ">") |
|
line = line.replace(" ", " ") |
|
line = line.replace("*", "*") |
|
line = line.replace("_", "_") |
|
line = line.replace("-", "-") |
|
line = line.replace(".", ".") |
|
line = line.replace("!", "!") |
|
line = line.replace("(", "(") |
|
line = line.replace(")", ")") |
|
line = line.replace("$", "$") |
|
lines[i] = "<br>"+line |
|
text = "".join(lines) |
|
return text |
|
|
|
|
|
def predict(input, chatbot, max_length, top_p, temperature, history): |
|
chatbot.append((parse_text(input), "")) |
|
for response, history in model.stream_chat(tokenizer, input, history, max_length=max_length, top_p=top_p, |
|
temperature=temperature): |
|
chatbot[-1] = (parse_text(input), parse_text(response)) |
|
|
|
yield chatbot, history |
|
|
|
|
|
def reset_user_input(): |
|
return gr.update(value='') |
|
|
|
|
|
def reset_state(): |
|
return [], [] |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.HTML("""<h1 align="center">ChatGLM</h1>""") |
|
|
|
chatbot = gr.Chatbot() |
|
with gr.Row(): |
|
with gr.Column(scale=4): |
|
with gr.Column(scale=12): |
|
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style( |
|
container=False) |
|
with gr.Column(min_width=32, scale=1): |
|
submitBtn = gr.Button("Submit", variant="primary") |
|
with gr.Column(scale=1): |
|
emptyBtn = gr.Button("Clear History") |
|
max_length = gr.Slider(0, 4096, value=2048, step=1.0, label="Maximum length", interactive=True) |
|
top_p = gr.Slider(0, 1, value=0.7, step=0.01, label="Top P", interactive=True) |
|
temperature = gr.Slider(0, 1, value=0.95, step=0.01, label="Temperature", interactive=True) |
|
|
|
history = gr.State([]) |
|
|
|
submitBtn.click(predict, [user_input, chatbot, max_length, top_p, temperature, history], [chatbot, history], |
|
show_progress=True) |
|
submitBtn.click(reset_user_input, [], [user_input]) |
|
|
|
emptyBtn.click(reset_state, outputs=[chatbot, history], show_progress=True) |
|
|
|
|
|
|
|
def main(): |
|
global model, tokenizer |
|
|
|
parser = HfArgumentParser(( |
|
ModelArguments)) |
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): |
|
# If we pass only one argument to the script and it's the path to a json file, |
|
# let's parse it to get our arguments. |
|
model_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))[0] |
|
else: |
|
model_args = parser.parse_args_into_dataclasses()[0] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_args.model_name_or_path, trust_remote_code=True) |
|
config = AutoConfig.from_pretrained( |
|
model_args.model_name_or_path, trust_remote_code=True) |
|
|
|
config.pre_seq_len = model_args.pre_seq_len |
|
config.prefix_projection = model_args.prefix_projection |
|
|
|
if model_args.ptuning_checkpoint is not None: |
|
print(f"Loading prefix_encoder weight from {model_args.ptuning_checkpoint}") |
|
model = AutoModel.from_pretrained(model_args.model_name_or_path, config=config, trust_remote_code=True) |
|
prefix_state_dict = torch.load(os.path.join(model_args.ptuning_checkpoint, "pytorch_model.bin")) |
|
new_prefix_state_dict = {} |
|
for k, v in prefix_state_dict.items(): |
|
if k.startswith("transformer.prefix_encoder."): |
|
new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v |
|
model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict) |
|
else: |
|
model = AutoModel.from_pretrained(model_args.model_name_or_path, config=config, trust_remote_code=True) |
|
|
|
if model_args.quantization_bit is not None: |
|
print(f"Quantized to {model_args.quantization_bit} bit") |
|
model = model.quantize(model_args.quantization_bit) |
|
|
|
if model_args.pre_seq_len is not None: |
|
# P-tuning v2 |
|
model = model.half().cuda() |
|
model.transformer.prefix_encoder.float().cuda() |
|
|
|
model = model.eval() |
|
demo.queue().launch(share=False, inbrowser=True) |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
main() |