from langchain.llms.base import LLM from typing import Optional, List, Mapping, Any from langchain.llms.utils import enforce_stop_tokens from transformers import AutoTokenizer, AutoModel """ChatGLM_G is a wrapper around the ChatGLM model to fit LangChain framework. May not be an optimal implementation""" class ChatGLM_G(LLM): tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True) model = AutoModel.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True).half().cuda() history = [] @property def _llm_type(self) -> str: return "ChatGLM_G" def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str: response, updated_history = self.model.chat(self.tokenizer, prompt, history=self.history) print("ChatGLM: prompt: ", prompt) print("ChatGLM: response: ", response) if stop is not None: response = enforce_stop_tokens(response, stop) self.history = updated_history return response def __call__(self, prompt: str, stop: Optional[List[str]] = None) -> str: response, updated_history = self.model.chat(self.tokenizer, prompt, history=self.history) print("ChatGLM: prompt: ", prompt) print("ChatGLM: response: ", response) if stop is not None: response = enforce_stop_tokens(response, stop) self.history = updated_history return response