#! /usr/bin/python3 # -*- coding: utf-8 -*- from fastapi import FastAPI, Request from fastapi.staticfiles import StaticFiles from sse_starlette.sse import ServerSentEvent, EventSourceResponse from fastapi.middleware.cors import CORSMiddleware import uvicorn import torch from transformers import AutoTokenizer, AutoModel import argparse import logging import os import json import sys def getLogger(name, file_name, use_formatter=True): logger = logging.getLogger(name) logger.setLevel(logging.INFO) console_handler = logging.StreamHandler(sys.stdout) formatter = logging.Formatter('%(asctime)s %(message)s') console_handler.setFormatter(formatter) console_handler.setLevel(logging.INFO) logger.addHandler(console_handler) if file_name: handler = logging.FileHandler(file_name, encoding='utf8') handler.setLevel(logging.INFO) if use_formatter: formatter = logging.Formatter('%(asctime)s - %(name)s - %(message)s') handler.setFormatter(formatter) logger.addHandler(handler) return logger logger = getLogger('ChatGLM', 'chatlog.log') MAX_HISTORY = 5 class ChatGLM(): def __init__(self, model_name_or_path, quantize_level, gpu_id) -> None: logger.info("Start initialize model...") self.tokenizer = AutoTokenizer.from_pretrained( model_name_or_path, trust_remote_code=True) self.model = self._model(model_name_or_path, quantize_level, gpu_id) self.model.eval() _, _ = self.model.chat(self.tokenizer, "你好", history=[]) logger.info("Model initialization finished.") def _model(self, model_name_or_path, quantize_level, gpu_id): model_name = model_name_or_path quantize = int(quantize_level) model = None if gpu_id == '-1': if quantize == 8: print('CPU模式下量化等级只能是16或4,使用4') model_name = "THUDM/chatglm-6b-int4" elif quantize == 4: model_name = "THUDM/chatglm-6b-int4" model = AutoModel.from_pretrained(model_name, trust_remote_code=True).float() else: gpu_ids = gpu_id.split(",") self.devices = ["cuda:{}".format(id) for id in gpu_ids] if quantize == 16: model = AutoModel.from_pretrained(model_name, trust_remote_code=True).half().cuda() else: model = AutoModel.from_pretrained(model_name, trust_remote_code=True).half().quantize(quantize).cuda() return model def clear(self) -> None: if torch.cuda.is_available(): for device in self.devices: with torch.cuda.device(device): torch.cuda.empty_cache() torch.cuda.ipc_collect() def answer(self, query: str, history): response, history = self.model.chat(self.tokenizer, query, history=history) history = [list(h) for h in history] return response, history def stream(self, query, history, max_length, top_p, temperature): if query is None or history is None: yield {"query": "", "response": "", "history": [], "finished": True} size = 0 response = "" for response, history in self.model.stream_chat(self.tokenizer, query = query, history = history, max_length = max_length, top_p = top_p, temperature = temperature): this_response = response[size:] history = [list(h) for h in history] size = len(response) yield {"delta": this_response, "response": response, "finished": False} logger.info("Answer - {}".format(response)) yield {"query": query, "delta": "[EOS]", "response": response, "history": history, "finished": True} def start_server(model_name_or_path, quantize_level, http_address: str, port: int, gpu_id: str): os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID' os.environ['CUDA_VISIBLE_DEVICES'] = gpu_id bot = ChatGLM(model_name_or_path, quantize_level, gpu_id) app = FastAPI() app.add_middleware( CORSMiddleware, allow_origins = ["*"], allow_credentials = True, allow_methods=["*"], allow_headers=["*"] ) @app.post("/chat") async def answer_question(arg_dict: dict): result = {"query": "", "response": "", "success": False} try: text = arg_dict["query"] ori_history = arg_dict["history"] logger.info("Query - {}".format(text)) if len(ori_history) > 0: logger.info("History - {}".format(ori_history)) history = ori_history[-MAX_HISTORY:] history = [tuple(h) for h in history] response, history = bot.answer(text, history) logger.info("Answer - {}".format(response)) ori_history.append((text, response)) result = {"query": text, "response": response, "history": ori_history, "success": True} except Exception as e: logger.error(f"error: {e}") return result @app.post("/stream") async def answer_question_stream(arg_dict: dict): def decorate(generator): for item in generator: yield ServerSentEvent(json.dumps(item, ensure_ascii=False), event='delta') result = {"query": "", "response": "", "success": False} try: query = arg_dict.get("query",None) ori_history = arg_dict.get("history",[]) max_length = arg_dict.get("max_length",2048) top_p = arg_dict.get("top_p",0.95) temperature = arg_dict.get("temperature",0.01) logger.info("Query - {}".format(query)) if len(ori_history) > 0: logger.info("History - {}".format(ori_history)) history = ori_history[-MAX_HISTORY:] history = [tuple(h) for h in history] return EventSourceResponse(decorate(bot.stream(query, history, max_length, top_p, temperature))) except Exception as e: logger.error(f"error: {e}") return EventSourceResponse(decorate(bot.stream(None, None))) logger.info("starting server...") uvicorn.run(app=app, host=http_address, port=port) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Stream API Service for ChatGLM-6B') parser.add_argument('--model_name_or_path', '-m', help='model name', default='THUDM/chatglm-6b') parser.add_argument('--device', '-d', help='device,-1 means cpu, other means gpu ids', default='0') parser.add_argument('--quantize', '-q', help='level of quantize, option:16 or 4', default=16) parser.add_argument('--host', '-H', help='host to listen', default='0.0.0.0') parser.add_argument('--port', '-P', help='port of this service', default=8888) args = parser.parse_args() start_server(args.model_name_or_path, args.quantize, args.host, int(args.port), args.device)