from transformers import AutoModel, AutoTokenizer import streamlit as st from streamlit_chat import message st.set_page_config( page_title="ChatGLM-6b 演示", page_icon=":robot:" ) @st.cache_resource def get_model(): tokenizer = AutoTokenizer.from_pretrained("/THUDM/chatglm-6b", trust_remote_code=True) model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda() model = model.eval() return tokenizer, model MAX_TURNS = 20 MAX_BOXES = MAX_TURNS * 2 def predict(input, history=None): tokenizer, model = get_model() if history is None: history = [] response, history = model.chat(tokenizer, input, history) #updates = [] for i, (query, response) in enumerate(history): #updates.append("用户:" + query) message(query, avatar_style="big-smile", key=str(i) + "_user") #updates.append("ChatGLM-6B:" + response) message(response, avatar_style="bottts", key=str(i)) # if len(updates) < MAX_BOXES: # updates = updates + [""] * (MAX_BOXES - len(updates)) return history # create a prompt text for the text generation prompt_text = st.text_area(label="用户命令输入", height = 100, placeholder="请在这儿输入您的命令") if 'state' not in st.session_state: st.session_state['state'] = [] if st.button("发送", key="predict"): with st.spinner("AI正在思考,请稍等........"): # text generation st.session_state["state"] = predict(prompt_text, st.session_state["state"]) st.balloons()