import os from typing import Dict, Tuple, Union, Optional, List import torch from torch.nn import Module from transformers import AutoModel, AutoTokenizer from transformers.tokenization_utils import PreTrainedTokenizer def calculate_per_gpu_layers(gpu_list: List[int], total_layers: int) -> Dict[int, int]: """ Calculate the number of layers to be allocated to each GPU based on the memory ratio. Args: gpu_list (List[int]): A list of GPU indices. total_layers (int): The total number of layers in the model. Returns: Dict[int, int]: A dictionary mapping GPU indices to the number of layers assigned to each GPU. >>> from unittest import mock >>> import torch >>> mock_get_device_properties = mock.Mock() >>> fake_device_properties = lambda gpu: type('', (), {'total_memory': (gpu + 1) * 1024})() >>> mock_get_device_properties.side_effect = fake_device_properties >>> torch.cuda.get_device_properties = mock_get_device_properties >>> calculate_per_gpu_layers([0, 1, 2], 30) {0: 5, 1: 10, 2: 15} """ # 根据每个GPU的显存大小,计算每个GPU应分配的层数 # 获取每个gpu的显存大小 gpu_memory_map = { gpu: torch.cuda.get_device_properties(gpu).total_memory for gpu in gpu_list } # 计算总显存大小 total_memory = sum(gpu_memory_map.values()) # 计算每个GPU的显存比例 gpu_memory_ratios = { gpu: memory / total_memory for gpu, memory in gpu_memory_map.items() } # 计算每个 GPU 应分配的层数 per_gpu_layers = { gpu: int(round(total_layers * ratio)) for gpu, ratio in gpu_memory_ratios.items() } # 修正分配误差,确保总层数为total_layers while True: diff = total_layers - sum(per_gpu_layers.values()) if diff > 0: gpu_with_max_memory = max(gpu_memory_ratios, key=gpu_memory_ratios.get) per_gpu_layers[gpu_with_max_memory] += diff elif diff < 0: gpu_with_min_memory = min(gpu_memory_ratios, key=gpu_memory_ratios.get) per_gpu_layers[gpu_with_min_memory] -= -diff else: break return per_gpu_layers def auto_configure_device_map(num_gpus: int = 2, gpu_list: Optional[List[int]] = None) -> Dict[str, int]: """ Automatically configure the device map for model parallelism based on the number of GPUs and their memory ratios. Args: num_gpus (int): The number of GPUs to be used. gpu_list (Optional[List[int]]): An optional list of GPU indices. Defaults to None. Returns: Dict[str, int]: A dictionary representing the device map for model parallelism. >>> from unittest import mock >>> import torch >>> # mock torch.cuda.get_device_properties >>> mock_get_device_properties = mock.Mock() >>> fake_device_properties = lambda gpu: type('', (), {'total_memory': (gpu + 1) * 1024})() >>> mock_get_device_properties.side_effect = fake_device_properties >>> torch.cuda.get_device_properties = mock_get_device_properties >>> # mock torch.cuda.device_count >>> mock_device_count = mock.Mock() >>> mock_device_count.return_value = 3 >>> torch.cuda.device_count = mock_device_count >>> for k, v in auto_configure_device_map(3).items(): ... print(f"{k}: {v}") transformer.word_embeddings: 0 transformer.final_layernorm: 0 lm_head: 0 transformer.layers.0: 0 transformer.layers.1: 0 transformer.layers.2: 0 transformer.layers.3: 1 transformer.layers.4: 1 transformer.layers.5: 1 transformer.layers.6: 1 transformer.layers.7: 1 transformer.layers.8: 1 transformer.layers.9: 1 transformer.layers.10: 1 transformer.layers.11: 1 transformer.layers.12: 1 transformer.layers.13: 2 transformer.layers.14: 2 transformer.layers.15: 2 transformer.layers.16: 2 transformer.layers.17: 2 transformer.layers.18: 2 transformer.layers.19: 2 transformer.layers.20: 2 transformer.layers.21: 2 transformer.layers.22: 2 transformer.layers.23: 2 transformer.layers.24: 2 transformer.layers.25: 2 transformer.layers.26: 2 transformer.layers.27: 2 """ # transformer.word_embeddings 占用1层 # transformer.final_layernorm 和 lm_head 占用1层 # transformer.layers 占用 28 层 # 总共30层分配到num_gpus张卡上 num_trans_layers = 28 if gpu_list is None: gpu_list = list(range(num_gpus)) assert len(gpu_list) <= torch.cuda.device_count(), "分配的GPU数量超过了实际可用的GPU数量" # 获取每个gpu的承载的层数 per_gpu_layer_dict = calculate_per_gpu_layers(gpu_list, total_layers=num_trans_layers + 2) # bugfix: 在linux中调用torch.embedding传入的weight,input不在同一device上,导致RuntimeError # windows下 model.device 会被设置成 transformer.word_embeddings.device # linux下 model.device 会被设置成 lm_head.device # 在调用chat或者stream_chat时,input_ids会被放到model.device上 # 如果transformer.word_embeddings.device和model.device不同,则会导致RuntimeError # 因此这里将transformer.word_embeddings,transformer.final_layernorm,lm_head都放到第一张卡上 current_gpu_index = 0 current_gpu = gpu_list[current_gpu_index] device_map = { 'transformer.word_embeddings': current_gpu, 'transformer.final_layernorm': current_gpu, 'lm_head': current_gpu } used = 2 # 分配剩余的层数 for i in range(num_trans_layers): if used < per_gpu_layer_dict[current_gpu]: used += 1 else: # 当前 GPU 的层数已分配完,切换到下一个 GPU current_gpu_index += 1 current_gpu = gpu_list[current_gpu_index] used = 1 device_map[f"transformer.layers.{i}"] = current_gpu return device_map def load_model_on_gpus(checkpoint_path: Union[str, os.PathLike], num_gpus: int = 2, gpu_list: Optional[List[int]] = None, multi_gpu_model_cache_dir: Union[str, os.PathLike] = "./temp_model_dir", device_map: Optional[Dict[str, int]] = None, tokenizer: Optional[PreTrainedTokenizer] = None, **kwargs) -> Module: """ Load a pretrained model on multiple GPUs. Args: checkpoint_path (Union[str, os.PathLike]): The path to the checkpoint or model directory. num_gpus (int, optional): The number of GPUs to use. Defaults to 2. gpu_list (Optional[List[int]], optional): A list of GPU indices. Defaults to None. multi_gpu_model_cache_dir (Union[str, os.PathLike], optional): A directory to cache the multi-GPU model. device_map (Optional[Dict[str, int]], optional): A dictionary representing the device map for model parallelism. tokenizer (Optional[PreTrainedTokenizer], optional): The tokenizer to be used with the model. Defaults to None. **kwargs: Additional keyword arguments for loading the model. Returns: Module: The pretrained model on multiple GPUs. """ from accelerate import load_checkpoint_and_dispatch model = AutoModel.from_pretrained(checkpoint_path, trust_remote_code=True, **kwargs) model = model.eval() if device_map is None: device_map = auto_configure_device_map(num_gpus, gpu_list) try: model = load_checkpoint_and_dispatch( model, checkpoint_path, device_map=device_map, offload_folder="offload", offload_state_dict=True).half() except ValueError: # index.json not found print(f"index.json not found, auto fixing and saving model to {multi_gpu_model_cache_dir} ...") assert multi_gpu_model_cache_dir is not None, "using auto fix, cache_dir must not be None" model.save_pretrained(multi_gpu_model_cache_dir, max_shard_size='2GB') model = load_checkpoint_and_dispatch( model, multi_gpu_model_cache_dir, device_map=device_map, offload_folder="offload", offload_state_dict=True).half() if tokenizer is not None: tokenizer.save_pretrained(multi_gpu_model_cache_dir) print(f"loading model successfully, you should use checkpoint_path={multi_gpu_model_cache_dir} next time") return model def load_model_and_tokenizer(checkpoint_path: Union[str, os.PathLike], num_gpus: int = 1, multi_gpu_model_cache_dir: Union[str, os.PathLike] = "./temp_model_dir", gpu_list: Optional[List[int]] = None, **kwargs) -> Tuple[Module, PreTrainedTokenizer]: """ Load a pretrained model and its tokenizer. Args: checkpoint_path (Union[str, os.PathLike]): The path to the checkpoint or model directory. num_gpus (int, optional): The number of GPUs to use. Defaults to 1. multi_gpu_model_cache_dir (Union[str, os.PathLike], optional): A directory to cache the multi-GPU model. gpu_list (Optional[List[int]], optional): A list of GPU indices. Defaults to None. **kwargs: Additional keyword arguments for loading the model and tokenizer. Returns: Tuple[Module, PreTrainedTokenizer]: A tuple containing the loaded model and tokenizer. """ tokenizer = AutoTokenizer.from_pretrained(checkpoint_path, trust_remote_code=True, **kwargs) if num_gpus < 2: model = AutoModel.from_pretrained(checkpoint_path, trust_remote_code=True, **kwargs).half().cuda() model = model.eval() else: model = load_model_on_gpus(checkpoint_path, num_gpus=num_gpus, gpu_list=gpu_list, multi_gpu_model_cache_dir=multi_gpu_model_cache_dir, tokenizer=tokenizer, **kwargs) return model, tokenizer