''' Author: lichuang Date: 2023-03-23 09:18:13 Description: 将模型加载到多张GPU卡中,根据gpu的数量自动分配平均的显存占用 ''' from typing import Dict from accelerate import load_checkpoint_and_dispatch from transformers import AutoModel def auto_configure_device_map(num_gpus) -> Dict[str, int]: # transformer.word_embeddings 占用1层 # transformer.final_layernorm 和 lm_head 占用1层 # transformer.layers 占用 28 层 # 总共30层分配到num_gpus张卡上 num_trans_layers = 28 per_gpu_layers = 30 / num_gpus device_map = {'transformer.word_embeddings': 0, 'transformer.final_layernorm': num_gpus - 1, 'lm_head': num_gpus - 1} used = 1 gpu_target = 0 for i in range(num_trans_layers): if used >= per_gpu_layers: gpu_target += 1 used = 0 assert gpu_target < num_gpus device_map[f'transformer.layers.{i}'] = gpu_target used += 1 return device_map def load_model_on_gpus(checkpoint_path, num_gpus=2): device_map = auto_configure_device_map(num_gpus) model = AutoModel.from_pretrained( checkpoint_path, trust_remote_code=True) model = model.eval() model = load_checkpoint_and_dispatch( model, checkpoint_path, device_map=device_map, offload_folder="offload", offload_state_dict=True).half() return model