Update for MacOS

dev
duzx16 2023-05-04 22:00:41 +02:00
parent ba8daf4c24
commit fd1ca66c86
2 changed files with 14 additions and 75 deletions

View File

@ -51,7 +51,7 @@ ChatGLM-6B 使用了和 ChatGPT 相似的技术,针对中文问答和对话进
使用 pip 安装依赖:`pip install -r requirements.txt`,其中 `transformers` 库版本推荐为 `4.27.1`,但理论上不低于 `4.23.1` 即可。
此外,如果需要在 cpu 上运行量化后的模型,还需要安装 `gcc``openmp`。多数 Linux 发行版默认已安装。对于 Windows ,可在安装 [TDM-GCC](https://jmeubank.github.io/tdm-gcc/) 时勾选 `openmp`。 Windows 测试环境 `gcc` 版本为 `TDM-GCC 10.3.0` Linux 为 `gcc 11.3.0`
此外,如果需要在 cpu 上运行量化后的模型,还需要安装 `gcc``openmp`。多数 Linux 发行版默认已安装。对于 Windows ,可在安装 [TDM-GCC](https://jmeubank.github.io/tdm-gcc/) 时勾选 `openmp`。 Windows 测试环境 `gcc` 版本为 `TDM-GCC 10.3.0` Linux 为 `gcc 11.3.0`在 MacOS 上请参考 [Q1](FAQ.md#q1)。
### 代码调用
@ -191,48 +191,20 @@ model = AutoModel.from_pretrained("THUDM/chatglm-6b-int4",trust_remote_code=True
如果遇到了报错 `Could not find module 'nvcuda.dll'` 或者 `RuntimeError: Unknown platform: darwin` (MacOS) ,请[从本地加载模型](README.md#从本地加载模型)
### Mac 上的 CPU 部署和加速
Mac直接加载量化后的模型会出现问题例如`clang: error: unsupported option '-fopenmp'这是由于Mac由于本身缺乏omp导致的此时可运行但是单核。
以[chatglm-6b-int4](https://huggingface.co/THUDM/chatglm-6b-int4)量化模型为例需要做如下配置即可在Mac下使用OMP
#### 第一步:安装`libomp`
```bash
# 第一步: 参考`https://mac.r-project.org/openmp/`
## 假设: gcc(clang)是14.x版本其他版本见R-Project提供的表格
curl -O https://mac.r-project.org/openmp/openmp-14.0.6-darwin20-Release.tar.gz
sudo tar fvxz openmp-14.0.6-darwin20-Release.tar.gz -C /
```
此时会安装下面几个文件:`/usr/local/lib/libomp.dylib`, `/usr/local/include/ompt.h`, `/usr/local/include/omp.h`, `/usr/local/include/omp-tools.h`
#### 第二步:配置`gcc`编译项
然后针对`chatglm-6b-int4`, 修改[quantization.py](https://huggingface.co/THUDM/chatglm-6b-int4/blob/main/quantization.py),主要是把硬编码的`gcc -O3 -fPIC -pthread -fopenmp -std=c99`命令修改成`gcc -O3 -fPIC -Xclang -fopenmp -pthread -lomp -std=c99`[对应代码](https://huggingface.co/THUDM/chatglm-6b-int4/blob/63d66b0572d11cedd5574b38da720299599539b3/quantization.py#L168)见下:
```python
# 第二步: 找到包含`gcc -O3 -fPIC -pthread -fopenmp -std=c99`的这一行,并修改成
compile_command = "gcc -O3 -fPIC -Xclang -fopenmp -pthread -lomp -std=c99 {} -shared -o {}".format(source_code, kernel_file)
```
> 补充说明:可以用`platform.uname()[0] == 'Darwin'`做OS的判断从而使得[quantization.py](https://huggingface.co/THUDM/chatglm-6b-int4/blob/main/quantization.py)有兼容性。
> 注意:如果你之前运行`ChatGLM`项目失败过最好清一下Huggingface的缓存i.e. 默认下是 `rm -rf ${HOME}/.cache/huggingface/modules/transformers_modules/chatglm-6b-int4`。由于使用了`rm`命令,请明确知道自己在删除什么。
### Mac 上的 GPU 加速
对于搭载了Apple Silicon的Mac以及MacBook可以使用 MPS 后端来在 GPU 上运行 ChatGLM-6B。需要参考 Apple 的 [官方说明](https://developer.apple.com/metal/pytorch) 安装 PyTorch-Nightly。
### Mac 部署
对于搭载了 Apple Silicon 或者 AMD GPU 的Mac可以使用 MPS 后端来在 GPU 上运行 ChatGLM-6B。需要参考 Apple 的 [官方说明](https://developer.apple.com/metal/pytorch) 安装 PyTorch-Nightly正确的版本号应该是2.1.0.dev2023xxxx而不是2.0.0)。
目前在 MacOS 上只支持[从本地加载模型](README.md#从本地加载模型)。将代码中的模型加载改为从本地加载,并使用 mps 后端:
```python
model = AutoModel.from_pretrained("your local path", trust_remote_code=True).half().to('mps')
```
即可使用在 Mac 上使用 GPU 加速模型推理。如果出现关于`half`的报错比如在MacOS 13.3.x上可以改成
```python
model = AutoModel.from_pretrained("your local path", trust_remote_code=True).float().to('mps')
```
> 注意上述方法在非量化版中运行没有问题。量化版模型在MPS设备运行可以关注[这个](https://github.com/THUDM/ChatGLM-6B/issues/462)ISSUE这主要是[kernel](https://huggingface.co/THUDM/chatglm-6b/blob/658202d88ac4bb782b99e99ac3adff58b4d0b813/quantization.py#L27)的原因,可以解包这个`ELF`文件看到是CUDA的实现。
加载半精度的 ChatGLM-6B 模型需要大概 13GB 内存。内存较小的机器(比如 16GB 内存的 MacBook Pro在空余内存不足的情况下会使用硬盘上的虚拟内存导致推理速度严重变慢。此时可以使用量化后的模型如 chatglm-6b-int4。因为 GPU 上量化的 kernel 是使用 CUDA 编写的,因此无法在 MacOS 上使用,只能使用 CPU 进行推理。
```python
# INT8 量化的模型将"THUDM/chatglm-6b-int4"改为"THUDM/chatglm-6b-int8"
model = AutoModel.from_pretrained("THUDM/chatglm-6b-int4",trust_remote_code=True).float()
```
为了充分使用 CPU 并行,还需要[单独安装 OpenMP](FAQ.md#q1)。
### 多卡部署
如果你有多张 GPU但是每张 GPU 的显存大小都不足以容纳完整的模型那么可以将模型切分在多张GPU上。首先安装 accelerate: `pip install accelerate`,然后通过如下方法加载模型:

View File

@ -188,54 +188,21 @@ model = AutoModel.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=Tru
If your encounter the error `Could not find module 'nvcuda.dll'` or `RuntimeError: Unknown platform: darwin`(MacOS), please [load the model locally](README_en.md#load-the-model-locally).
### CPU Deployment on Mac
The default Mac enviroment does not support Openmp. One may encounter such warning/errors when execute the `AutoModel.from_pretrained(...)` command `clang: error: unsupported option '-fopenmp'`.
Take the quantified int4 version [chatglm-6b-int4](https://huggingface.co/THUDM/chatglm-6b-int4) for example, two extra steps are needed.
#### STEP 1: Install `libomp`
```bash
# STEP 1: install libopenmp, check `https://mac.r-project.org/openmp/` for details.
# Assumption: `gcc(clang) >= 14.x`, read the R-Poject before run the code:
curl -O https://mac.r-project.org/openmp/openmp-14.0.6-darwin20-Release.tar.gz
sudo tar fvxz openmp-14.0.6-darwin20-Release.tar.gz -C /
```
Four files (`/usr/local/lib/libomp.dylib`, `/usr/local/include/ompt.h`, `/usr/local/include/omp.h`, `/usr/local/include/omp-tools.h`) are installed accordingly.
#### STEP 2: Configure `gcc` with `-fopenmp`
Next, modify the [quantization.py](https://huggingface.co/THUDM/chatglm-6b-int4/blob/main/quantization.py) file of the `chatglm-6b-int4` project. In the file, change the `gcc -O3 -fPIC -pthread -fopenmp -std=c99` configuration to `gcc -O3 -fPIC -Xclang -fopenmp -pthread -lomp -std=c99` (check the corresponding python code [HERE](https://huggingface.co/THUDM/chatglm-6b-int4/blob/63d66b0572d11cedd5574b38da720299599539b3/quantization.py#L168)), i.e.:
```python
# STEP 2: Change the line contains `gcc -O3 -fPIC -pthread -fopenmp -std=c99` to:
compile_command = "gcc -O3 -fPIC -Xclang -fopenmp -pthread -lomp -std=c99 {} -shared -o {}".format(source_code, kernel_file)
```
> Notice: `platform.uname()[0] == 'Darwin'` could be used to determine the OS type and further polish the python script.
> Notice: If you have executed the `ChatGLM` project and failed, you may want to clean the cache of Huggingface before your next try, i.e. `rm -rf ${HOME}/.cache/huggingface/modules/transformers_modules/chatglm-6b-int4`. Since `rm` is used, please MAKE SURE that the command deletes the right files.
### GPU Inference on Mac
For Macs (and MacBooks) with Apple Silicon, it is possible to use the MPS backend to run ChatGLM-6B on the GPU. First, you need to refer to Apple's [official instructions](https://developer.apple.com/metal/pytorch) to install PyTorch-Nightly.
### Inference on Mac
For Macs (and MacBooks) with Apple Silicon, it is possible to use the MPS backend to run ChatGLM-6B on the GPU. First, you need to refer to Apple's [official instructions](https://developer.apple.com/metal/pytorch) to install PyTorch-Nightly. (The correct version number should be 2.1.0.dev2023xxxx, not 2.0.0).
Currently you must [load the model locally](README_en.md#load-the-model-locally) on MacOS. Change the code to load the model from your local path, and use the mps backend:
```python
model = AutoModel.from_pretrained("your local path", trust_remote_code=True).half().to('mps')
```
For Mac users with Mac OS >= 13.3, one may encounter errors related to the `half()` method. Use the `float()` method instead:
Loading a FP16 ChatGLM-6B model requires about 13GB of memory. Machines with less memory (such as a MacBook Pro with 16GB of memory) will use the virtual memory on the hard disk when there is insufficient free memory, resulting in a serious slowdown in inference speed. At this time, a quantized model such as chatglm-6b-int4 can be used. Because the quantized kernel on the GPU is written in CUDA, it cannot be used on MacOS, and can only be inferred using the CPU:
```python
model = AutoModel.from_pretrained("your local path", trust_remote_code=True).float().to('mps')
# For INT8-quantized model, change "chatglm-6b-int4" to "chatglm-6b-int8"
model = AutoModel.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True).float()
```
Then you can use GPU-accelerated model inference on Mac.
> Notice: there is no promblem to run the non-quantified version of ChatGLM with MPS. One could check [this issue](https://github.com/THUDM/ChatGLM-6B/issues/462) to run the quantified version with MPS as the backend (and get `ERRORS`). Unpacking [kernel](https://huggingface.co/THUDM/chatglm-6b/blob/658202d88ac4bb782b99e99ac3adff58b4d0b813/quantization.py#L27) as an `ELF` file shows its backend is `cuda`, which fails on MPS currently (`torch 2.1.0.dev20230502`).
### Multi-GPU Deployment
If you have multiple GPUs, but the memory size of each GPU is not sufficient to accommodate the entire model, you can split the model across multiple GPUs.