mirror of https://github.com/THUDM/ChatGLM-6B
Update for MacOS
parent
ba8daf4c24
commit
fd1ca66c86
46
README.md
46
README.md
|
@ -51,7 +51,7 @@ ChatGLM-6B 使用了和 ChatGPT 相似的技术,针对中文问答和对话进
|
|||
|
||||
使用 pip 安装依赖:`pip install -r requirements.txt`,其中 `transformers` 库版本推荐为 `4.27.1`,但理论上不低于 `4.23.1` 即可。
|
||||
|
||||
此外,如果需要在 cpu 上运行量化后的模型,还需要安装 `gcc` 与 `openmp`。多数 Linux 发行版默认已安装。对于 Windows ,可在安装 [TDM-GCC](https://jmeubank.github.io/tdm-gcc/) 时勾选 `openmp`。 Windows 测试环境 `gcc` 版本为 `TDM-GCC 10.3.0`, Linux 为 `gcc 11.3.0`。
|
||||
此外,如果需要在 cpu 上运行量化后的模型,还需要安装 `gcc` 与 `openmp`。多数 Linux 发行版默认已安装。对于 Windows ,可在安装 [TDM-GCC](https://jmeubank.github.io/tdm-gcc/) 时勾选 `openmp`。 Windows 测试环境 `gcc` 版本为 `TDM-GCC 10.3.0`, Linux 为 `gcc 11.3.0`。在 MacOS 上请参考 [Q1](FAQ.md#q1)。
|
||||
|
||||
### 代码调用
|
||||
|
||||
|
@ -191,48 +191,20 @@ model = AutoModel.from_pretrained("THUDM/chatglm-6b-int4",trust_remote_code=True
|
|||
|
||||
如果遇到了报错 `Could not find module 'nvcuda.dll'` 或者 `RuntimeError: Unknown platform: darwin` (MacOS) ,请[从本地加载模型](README.md#从本地加载模型)
|
||||
|
||||
### Mac 上的 CPU 部署和加速
|
||||
|
||||
Mac直接加载量化后的模型会出现问题,例如`clang: error: unsupported option '-fopenmp',这是由于Mac由于本身缺乏omp导致的,此时可运行但是单核。
|
||||
|
||||
以[chatglm-6b-int4](https://huggingface.co/THUDM/chatglm-6b-int4)量化模型为例,需要做如下配置,即可在Mac下使用OMP:
|
||||
|
||||
#### 第一步:安装`libomp`
|
||||
|
||||
```bash
|
||||
# 第一步: 参考`https://mac.r-project.org/openmp/`
|
||||
## 假设: gcc(clang)是14.x版本,其他版本见R-Project提供的表格
|
||||
curl -O https://mac.r-project.org/openmp/openmp-14.0.6-darwin20-Release.tar.gz
|
||||
sudo tar fvxz openmp-14.0.6-darwin20-Release.tar.gz -C /
|
||||
```
|
||||
此时会安装下面几个文件:`/usr/local/lib/libomp.dylib`, `/usr/local/include/ompt.h`, `/usr/local/include/omp.h`, `/usr/local/include/omp-tools.h`。
|
||||
|
||||
#### 第二步:配置`gcc`编译项
|
||||
|
||||
然后针对`chatglm-6b-int4`, 修改[quantization.py](https://huggingface.co/THUDM/chatglm-6b-int4/blob/main/quantization.py),主要是把硬编码的`gcc -O3 -fPIC -pthread -fopenmp -std=c99`命令修改成`gcc -O3 -fPIC -Xclang -fopenmp -pthread -lomp -std=c99`,[对应代码](https://huggingface.co/THUDM/chatglm-6b-int4/blob/63d66b0572d11cedd5574b38da720299599539b3/quantization.py#L168)见下:
|
||||
|
||||
```python
|
||||
# 第二步: 找到包含`gcc -O3 -fPIC -pthread -fopenmp -std=c99`的这一行,并修改成
|
||||
compile_command = "gcc -O3 -fPIC -Xclang -fopenmp -pthread -lomp -std=c99 {} -shared -o {}".format(source_code, kernel_file)
|
||||
```
|
||||
|
||||
> 补充说明:可以用`platform.uname()[0] == 'Darwin'`做OS的判断,从而使得[quantization.py](https://huggingface.co/THUDM/chatglm-6b-int4/blob/main/quantization.py)有兼容性。
|
||||
|
||||
> 注意:如果你之前运行`ChatGLM`项目失败过,最好清一下Huggingface的缓存,i.e. 默认下是 `rm -rf ${HOME}/.cache/huggingface/modules/transformers_modules/chatglm-6b-int4`。由于使用了`rm`命令,请明确知道自己在删除什么。
|
||||
|
||||
### Mac 上的 GPU 加速
|
||||
对于搭载了Apple Silicon的Mac(以及MacBook),可以使用 MPS 后端来在 GPU 上运行 ChatGLM-6B。需要参考 Apple 的 [官方说明](https://developer.apple.com/metal/pytorch) 安装 PyTorch-Nightly。
|
||||
### Mac 部署
|
||||
对于搭载了 Apple Silicon 或者 AMD GPU 的Mac,可以使用 MPS 后端来在 GPU 上运行 ChatGLM-6B。需要参考 Apple 的 [官方说明](https://developer.apple.com/metal/pytorch) 安装 PyTorch-Nightly(正确的版本号应该是2.1.0.dev2023xxxx,而不是2.0.0)。
|
||||
|
||||
目前在 MacOS 上只支持[从本地加载模型](README.md#从本地加载模型)。将代码中的模型加载改为从本地加载,并使用 mps 后端:
|
||||
```python
|
||||
model = AutoModel.from_pretrained("your local path", trust_remote_code=True).half().to('mps')
|
||||
```
|
||||
即可使用在 Mac 上使用 GPU 加速模型推理。如果出现关于`half`的报错(比如在MacOS 13.3.x上),可以改成:
|
||||
```python
|
||||
model = AutoModel.from_pretrained("your local path", trust_remote_code=True).float().to('mps')
|
||||
```
|
||||
|
||||
> 注意:上述方法在非量化版中,运行没有问题。量化版模型在MPS设备运行可以关注[这个](https://github.com/THUDM/ChatGLM-6B/issues/462)ISSUE,这主要是[kernel](https://huggingface.co/THUDM/chatglm-6b/blob/658202d88ac4bb782b99e99ac3adff58b4d0b813/quantization.py#L27)的原因,可以解包这个`ELF`文件看到是CUDA的实现。
|
||||
加载半精度的 ChatGLM-6B 模型需要大概 13GB 内存。内存较小的机器(比如 16GB 内存的 MacBook Pro),在空余内存不足的情况下会使用硬盘上的虚拟内存,导致推理速度严重变慢。此时可以使用量化后的模型如 chatglm-6b-int4。因为 GPU 上量化的 kernel 是使用 CUDA 编写的,因此无法在 MacOS 上使用,只能使用 CPU 进行推理。
|
||||
```python
|
||||
# INT8 量化的模型将"THUDM/chatglm-6b-int4"改为"THUDM/chatglm-6b-int8"
|
||||
model = AutoModel.from_pretrained("THUDM/chatglm-6b-int4",trust_remote_code=True).float()
|
||||
```
|
||||
为了充分使用 CPU 并行,还需要[单独安装 OpenMP](FAQ.md#q1)。
|
||||
|
||||
### 多卡部署
|
||||
如果你有多张 GPU,但是每张 GPU 的显存大小都不足以容纳完整的模型,那么可以将模型切分在多张GPU上。首先安装 accelerate: `pip install accelerate`,然后通过如下方法加载模型:
|
||||
|
|
43
README_en.md
43
README_en.md
|
@ -188,54 +188,21 @@ model = AutoModel.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=Tru
|
|||
|
||||
If your encounter the error `Could not find module 'nvcuda.dll'` or `RuntimeError: Unknown platform: darwin`(MacOS), please [load the model locally](README_en.md#load-the-model-locally).
|
||||
|
||||
|
||||
### CPU Deployment on Mac
|
||||
|
||||
The default Mac enviroment does not support Openmp. One may encounter such warning/errors when execute the `AutoModel.from_pretrained(...)` command `clang: error: unsupported option '-fopenmp'`.
|
||||
|
||||
Take the quantified int4 version [chatglm-6b-int4](https://huggingface.co/THUDM/chatglm-6b-int4) for example, two extra steps are needed.
|
||||
|
||||
#### STEP 1: Install `libomp`
|
||||
|
||||
```bash
|
||||
# STEP 1: install libopenmp, check `https://mac.r-project.org/openmp/` for details.
|
||||
# Assumption: `gcc(clang) >= 14.x`, read the R-Poject before run the code:
|
||||
curl -O https://mac.r-project.org/openmp/openmp-14.0.6-darwin20-Release.tar.gz
|
||||
sudo tar fvxz openmp-14.0.6-darwin20-Release.tar.gz -C /
|
||||
```
|
||||
Four files (`/usr/local/lib/libomp.dylib`, `/usr/local/include/ompt.h`, `/usr/local/include/omp.h`, `/usr/local/include/omp-tools.h`) are installed accordingly.
|
||||
|
||||
#### STEP 2: Configure `gcc` with `-fopenmp`
|
||||
|
||||
Next, modify the [quantization.py](https://huggingface.co/THUDM/chatglm-6b-int4/blob/main/quantization.py) file of the `chatglm-6b-int4` project. In the file, change the `gcc -O3 -fPIC -pthread -fopenmp -std=c99` configuration to `gcc -O3 -fPIC -Xclang -fopenmp -pthread -lomp -std=c99` (check the corresponding python code [HERE](https://huggingface.co/THUDM/chatglm-6b-int4/blob/63d66b0572d11cedd5574b38da720299599539b3/quantization.py#L168)), i.e.:
|
||||
|
||||
```python
|
||||
# STEP 2: Change the line contains `gcc -O3 -fPIC -pthread -fopenmp -std=c99` to:
|
||||
compile_command = "gcc -O3 -fPIC -Xclang -fopenmp -pthread -lomp -std=c99 {} -shared -o {}".format(source_code, kernel_file)
|
||||
```
|
||||
|
||||
> Notice: `platform.uname()[0] == 'Darwin'` could be used to determine the OS type and further polish the python script.
|
||||
|
||||
> Notice: If you have executed the `ChatGLM` project and failed, you may want to clean the cache of Huggingface before your next try, i.e. `rm -rf ${HOME}/.cache/huggingface/modules/transformers_modules/chatglm-6b-int4`. Since `rm` is used, please MAKE SURE that the command deletes the right files.
|
||||
|
||||
### GPU Inference on Mac
|
||||
For Macs (and MacBooks) with Apple Silicon, it is possible to use the MPS backend to run ChatGLM-6B on the GPU. First, you need to refer to Apple's [official instructions](https://developer.apple.com/metal/pytorch) to install PyTorch-Nightly.
|
||||
### Inference on Mac
|
||||
For Macs (and MacBooks) with Apple Silicon, it is possible to use the MPS backend to run ChatGLM-6B on the GPU. First, you need to refer to Apple's [official instructions](https://developer.apple.com/metal/pytorch) to install PyTorch-Nightly. (The correct version number should be 2.1.0.dev2023xxxx, not 2.0.0).
|
||||
|
||||
Currently you must [load the model locally](README_en.md#load-the-model-locally) on MacOS. Change the code to load the model from your local path, and use the mps backend:
|
||||
```python
|
||||
model = AutoModel.from_pretrained("your local path", trust_remote_code=True).half().to('mps')
|
||||
```
|
||||
|
||||
For Mac users with Mac OS >= 13.3, one may encounter errors related to the `half()` method. Use the `float()` method instead:
|
||||
Loading a FP16 ChatGLM-6B model requires about 13GB of memory. Machines with less memory (such as a MacBook Pro with 16GB of memory) will use the virtual memory on the hard disk when there is insufficient free memory, resulting in a serious slowdown in inference speed. At this time, a quantized model such as chatglm-6b-int4 can be used. Because the quantized kernel on the GPU is written in CUDA, it cannot be used on MacOS, and can only be inferred using the CPU:
|
||||
|
||||
```python
|
||||
model = AutoModel.from_pretrained("your local path", trust_remote_code=True).float().to('mps')
|
||||
# For INT8-quantized model, change "chatglm-6b-int4" to "chatglm-6b-int8"
|
||||
model = AutoModel.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True).float()
|
||||
```
|
||||
|
||||
Then you can use GPU-accelerated model inference on Mac.
|
||||
|
||||
> Notice: there is no promblem to run the non-quantified version of ChatGLM with MPS. One could check [this issue](https://github.com/THUDM/ChatGLM-6B/issues/462) to run the quantified version with MPS as the backend (and get `ERRORS`). Unpacking [kernel](https://huggingface.co/THUDM/chatglm-6b/blob/658202d88ac4bb782b99e99ac3adff58b4d0b813/quantization.py#L27) as an `ELF` file shows its backend is `cuda`, which fails on MPS currently (`torch 2.1.0.dev20230502`).
|
||||
|
||||
### Multi-GPU Deployment
|
||||
If you have multiple GPUs, but the memory size of each GPU is not sufficient to accommodate the entire model, you can split the model across multiple GPUs.
|
||||
|
||||
|
|
Loading…
Reference in New Issue