mirror of https://github.com/THUDM/ChatGLM-6B
使用pydantic定义输入和输出结构.
parent
9cc1bd5136
commit
faf8353d9f
84
api.py
84
api.py
|
@ -1,14 +1,30 @@
|
|||
from fastapi import FastAPI, Request
|
||||
from transformers import AutoTokenizer, AutoModel
|
||||
import uvicorn, json, datetime
|
||||
import torch
|
||||
import threading
|
||||
import asyncio
|
||||
|
||||
from fastapi import FastAPI, Request
|
||||
from fastapi.responses import StreamingResponse
|
||||
from transformers import AutoTokenizer, AutoModel
|
||||
from pydantic import BaseModel
|
||||
import uvicorn, datetime
|
||||
import torch
|
||||
|
||||
|
||||
DEVICE = "cuda"
|
||||
DEVICE_ID = "0"
|
||||
EXECUTOR_POOL_SIZE = 10
|
||||
CUDA_DEVICE = f"{DEVICE}:{DEVICE_ID}" if DEVICE_ID else DEVICE
|
||||
|
||||
class Params(BaseModel):
|
||||
prompt: str = 'hello'
|
||||
history: list[list[str]] = []
|
||||
max_length: int = 2048
|
||||
top_p: float = 0.7
|
||||
temperature: float = 0.95
|
||||
|
||||
class Answer(BaseModel):
|
||||
status: int = 200
|
||||
time: str = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
||||
response: str
|
||||
history: list[list[str]] = []
|
||||
|
||||
def torch_gc():
|
||||
if torch.cuda.is_available():
|
||||
|
@ -21,45 +37,31 @@ app = FastAPI()
|
|||
|
||||
import concurrent
|
||||
from functools import partial
|
||||
pool = concurrent.futures.ThreadPoolExecutor(10)
|
||||
pool = concurrent.futures.ThreadPoolExecutor(EXECUTOR_POOL_SIZE)
|
||||
|
||||
@app.post("/")
|
||||
async def _create_item(request: Request):
|
||||
@app.post("/chat")
|
||||
async def create_chat(params: Params) -> Answer:
|
||||
global model, tokenizer
|
||||
json_post_raw = await request.json()
|
||||
json_post = json.dumps(json_post_raw)
|
||||
json_post_list = json.loads(json_post)
|
||||
prompt = json_post_list.get('prompt')
|
||||
history = json_post_list.get('history')
|
||||
max_length = json_post_list.get('max_length')
|
||||
top_p = json_post_list.get('top_p')
|
||||
temperature = json_post_list.get('temperature')
|
||||
loop = asyncio.get_event_loop()
|
||||
response, history = await loop.run_in_executor(pool,partial(model.chat,tokenizer,
|
||||
prompt,
|
||||
history=history,
|
||||
max_length=max_length if max_length else 2048,
|
||||
top_p=top_p if top_p else 0.7,
|
||||
temperature=temperature if temperature else 0.95))
|
||||
now = datetime.datetime.now()
|
||||
time = now.strftime("%Y-%m-%d %H:%M:%S")
|
||||
answer = {
|
||||
"response": response,
|
||||
"history": history,
|
||||
"status": 200,
|
||||
"time": time
|
||||
}
|
||||
log = "[" + time + "] " + '", prompt:"' + prompt + '", response:"' + repr(response) + '"'
|
||||
print(log)
|
||||
if EXECUTOR_POOL_SIZE != 0:
|
||||
loop = asyncio.get_event_loop()
|
||||
response, history = await loop.run_in_executor(pool, partial(model.chat,
|
||||
tokenizer,
|
||||
params.prompt,
|
||||
history=params.history,
|
||||
max_length=params.max_length,
|
||||
top_p=params.top_p,
|
||||
temperature=params.temperature))
|
||||
else:
|
||||
response, history = model.chat(tokenizer,
|
||||
params.prompt,
|
||||
history=params.history,
|
||||
max_length=params.max_length,
|
||||
top_p=params.top_p,
|
||||
temperature=params.temperature)
|
||||
answer_ok = Answer(response=response, history=history)
|
||||
# print(answer_ok.json())
|
||||
torch_gc()
|
||||
return answer
|
||||
|
||||
async def create_item(request: Request):
|
||||
loop = asyncio.get_event_loop()
|
||||
with concurrent.futures.ThreadPoolExecutor() as pool:
|
||||
result = await loop.run_in_executor(pool,_create_item, request)
|
||||
print(result)
|
||||
return result
|
||||
return answer_ok
|
||||
|
||||
if __name__ == '__main__':
|
||||
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
|
||||
|
|
Loading…
Reference in New Issue