mirror of https://github.com/THUDM/ChatGLM-6B
Merge 35f45dcf1b
into c6790a09f0
commit
ee0b36f527
48
api.py
48
api.py
|
@ -2,6 +2,7 @@ from fastapi import FastAPI, Request
|
|||
from transformers import AutoTokenizer, AutoModel
|
||||
import uvicorn, json, datetime
|
||||
import torch
|
||||
from sse_starlette.sse import EventSourceResponse
|
||||
|
||||
DEVICE = "cuda"
|
||||
DEVICE_ID = "0"
|
||||
|
@ -18,17 +19,23 @@ def torch_gc():
|
|||
app = FastAPI()
|
||||
|
||||
|
||||
@app.post("/")
|
||||
async def create_item(request: Request):
|
||||
global model, tokenizer
|
||||
json_post_raw = await request.json()
|
||||
json_post = json.dumps(json_post_raw)
|
||||
json_post_list = json.loads(json_post)
|
||||
prompt = json_post_list.get('prompt')
|
||||
history = json_post_list.get('history')
|
||||
max_length = json_post_list.get('max_length')
|
||||
top_p = json_post_list.get('top_p')
|
||||
temperature = json_post_list.get('temperature')
|
||||
def predict_stream(tokenizer, prompt, history, max_length, top_p, temperature):
|
||||
for response, history in model.stream_chat(tokenizer, prompt, history, max_length=max_length, top_p=top_p,
|
||||
temperature=temperature):
|
||||
now = datetime.datetime.now()
|
||||
time = now.strftime("%Y-%m-%d %H:%M:%S")
|
||||
yield json.dumps({
|
||||
'response': response,
|
||||
'history': history,
|
||||
'status': 200,
|
||||
'time': time
|
||||
})
|
||||
log = "[" + time + "] " + '", prompt:"' + prompt + '", response:"' + repr(response) + '"'
|
||||
print(log)
|
||||
return torch_gc()
|
||||
|
||||
|
||||
def predict(tokenizer, prompt, history, max_length, top_p, temperature):
|
||||
response, history = model.chat(tokenizer,
|
||||
prompt,
|
||||
history=history,
|
||||
|
@ -48,6 +55,25 @@ async def create_item(request: Request):
|
|||
torch_gc()
|
||||
return answer
|
||||
|
||||
@app.post("/")
|
||||
async def create_item(request: Request):
|
||||
global model, tokenizer
|
||||
json_post_raw = await request.json()
|
||||
json_post = json.dumps(json_post_raw)
|
||||
json_post_list = json.loads(json_post)
|
||||
prompt = json_post_list.get('prompt')
|
||||
history = json_post_list.get('history')
|
||||
max_length = json_post_list.get('max_length')
|
||||
top_p = json_post_list.get('top_p')
|
||||
temperature = json_post_list.get('temperature')
|
||||
stream = json_post_list.get('stream')
|
||||
if stream:
|
||||
res = predict_stream(tokenizer, prompt, history, max_length, top_p, temperature)
|
||||
return EventSourceResponse(res)
|
||||
else:
|
||||
answer = predict(tokenizer, prompt, history, max_length, top_p, temperature)
|
||||
return answer
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
|
||||
|
|
Loading…
Reference in New Issue