批量推理api,支持高并发

pull/1244/head
lukangkang 2023-06-15 19:01:59 +08:00
parent 27b04bce90
commit ebbb08e2d0
2 changed files with 224 additions and 0 deletions

205
ptuning/api_batch.py Normal file
View File

@ -0,0 +1,205 @@
from fastapi import FastAPI
import asyncio
import uvicorn
import logging
import logging
import os
import sys
import json
import time
import numpy as np
from datasets import load_dataset
from torch.utils.data import Dataset
import jieba
import datasets
from rouge_chinese import Rouge
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
import torch
import transformers
from transformers import (
AutoConfig,
AutoModel,
AutoTokenizer,
DataCollatorForSeq2Seq,
HfArgumentParser,
Seq2SeqTrainingArguments,
set_seed,
)
from trainer_seq2seq import Seq2SeqTrainer
from arguments import ModelArguments, DataTrainingArguments
logger = logging.getLogger(__name__)
app = FastAPI()
MAX_BATCH_SIZE = 100 # 最大批大小
MAX_WAIT_TIME = 1 # 最大等待时间(秒)
class DataProcessor:
def __init__(self):
self.queue = [] # 请求队列
self.processing = False # 是否正在进行批量处理
self.dicts = {}
self.processing_timer = None # 定时器对象
self.event = asyncio.Event() # 用于通知处理完成的事件
def process_batch(self):
while self.queue:
self.processing = True
batch = self.queue[:MAX_BATCH_SIZE]
del self.queue[:MAX_BATCH_SIZE]
new_batch = predict(batch)
self.dicts.update(dict(zip(batch, new_batch)))
self.processing = False
self.event.set() # 发送处理完成的信号
async def wait_for_result(self, data):
while data not in self.dicts:
await self.event.wait()
self.event.clear()
async def process_data(self, data):
self.queue.append(data)
if len(self.queue) == 1:
await asyncio.sleep(MAX_WAIT_TIME)
if not self.processing:
self.process_batch()
elif len(self.queue) >= MAX_BATCH_SIZE and not self.processing:
self.process_batch()
await self.wait_for_result(data)
# logging.info(self.dicts)
return json.loads(self.dicts[data])
data_processor = DataProcessor()
@app.get("/data")
async def handle_data(prompt: str):
return await data_processor.process_data(prompt)
def get_trainer_tokenizer(model_args, data_args, training_args):
# Set seed before initializing model.
set_seed(training_args.seed)
# Load pretrained model and tokenizer
config = AutoConfig.from_pretrained(model_args.model_name_or_path, trust_remote_code=True)
config.pre_seq_len = model_args.pre_seq_len
config.prefix_projection = model_args.prefix_projection
tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, trust_remote_code=True)
if model_args.ptuning_checkpoint is not None:
# Evaluation
# Loading extra state dict of prefix encoder
model = AutoModel.from_pretrained(model_args.model_name_or_path, config=config, trust_remote_code=True)
prefix_state_dict = torch.load(os.path.join(model_args.ptuning_checkpoint, "pytorch_model.bin"))
new_prefix_state_dict = {}
for k, v in prefix_state_dict.items():
if k.startswith("transformer.prefix_encoder."):
new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v
model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)
else:
model = AutoModel.from_pretrained(model_args.model_name_or_path, config=config, trust_remote_code=True)
if model_args.quantization_bit is not None:
print(f"Quantized to {model_args.quantization_bit} bit")
model = model.quantize(model_args.quantization_bit)
if model_args.pre_seq_len is not None:
# P-tuning v2
model = model.half()
model.transformer.prefix_encoder.float()
else:
# Finetune
model = model.float()
label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
data_collator = DataCollatorForSeq2Seq(
tokenizer,
model=model,
label_pad_token_id=label_pad_token_id,
pad_to_multiple_of=None,
padding=True
)
# Override the decoding parameters of Seq2SeqTrainer
training_args.generation_max_length = (
training_args.generation_max_length
if training_args.generation_max_length is not None
else data_args.val_max_target_length
)
training_args.generation_num_beams = (
data_args.num_beams if data_args.num_beams is not None else training_args.generation_num_beams
)
# Initialize our Trainer
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
train_dataset=None,
eval_dataset=None,
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics= None,
save_prefixencoder=model_args.pre_seq_len is not None
)
return trainer,tokenizer
def predict(prompts):
print('*'*50)
global trainer, tokenizer
data = {
"instruction": prompts,
"output": [1]*len(prompts)
}
predict_dataset = datasets.Dataset.from_dict(data)
def preprocess_function_eval(examples):
prompt_column = 'instruction'
inputs = []
for i in range(len(examples[prompt_column])):
if examples[prompt_column][i] :
inputs.append(examples[prompt_column][i])
model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, truncation=True, padding=True)
return model_inputs
with training_args.main_process_first(desc="prediction dataset map pre-processing"):
predict_dataset = predict_dataset.map(
preprocess_function_eval,
batched=True,
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on prediction dataset",
)
predict_results = trainer.predict(predict_dataset, metric_key_prefix="predict", max_length=max_seq_length, do_sample=True, top_p=0.7, temperature=0.95)
predictions = tokenizer.batch_decode(
predict_results.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
predictions = [pred.strip() for pred in predictions]
return predictions
if __name__ == "__main__":
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
trainer, tokenizer = get_trainer_tokenizer(model_args, data_args, training_args)
max_seq_length = data_args.max_source_length + data_args.max_target_length + 1
logging.basicConfig(level=logging.INFO)
uvicorn.run(app, host="0.0.0.0", port=8002)

19
ptuning/api_batch.sh Normal file
View File

@ -0,0 +1,19 @@
PRE_SEQ_LEN=128
CHECKPOINT=adgen-chatglm-6b-pt-128-2e-2
STEP=3000
CUDA_VISIBLE_DEVICES=1 python3 api_batch.py \
--do_predict \
--validation_file test.json \
--test_file test.json \
--overwrite_cache \
--prompt_column instruction \
--model_name_or_path THUDM/chatglm-6b \
--ptuning_checkpoint output/$CHECKPOINT/checkpoint-$STEP \
--output_dir ./output/$CHECKPOINT \
--overwrite_output_dir \
--max_source_length 128 \
--max_target_length 128 \
--per_device_eval_batch_size 100 \
--predict_with_generate \
--pre_seq_len $PRE_SEQ_LEN \