mirror of https://github.com/THUDM/ChatGLM-6B
rewrite web_demo.py with gradio.Chatbot and support load model from local directory
parent
5513dd7d2c
commit
da09ca4dff
|
@ -53,6 +53,8 @@ ChatGLM-6B 使用了和 ChatGPT 相似的技术,针对中文问答和对话进
|
|||
```
|
||||
完整的模型实现可以在 [Hugging Face Hub](https://huggingface.co/THUDM/chatglm-6b) 上查看。如果你从 Hugging Face Hub 上下载checkpoint的速度较慢,也可以从[这里](https://cloud.tsinghua.edu.cn/d/fb9f16d6dc8f482596c2/)手动下载。
|
||||
|
||||
手动下载的模型放置在 `model` 目录下
|
||||
|
||||
### Demo
|
||||
|
||||
我们提供了一个基于 [Gradio](https://gradio.app) 的网页版 Demo 和一个命令行 Demo。使用时首先需要下载本仓库:
|
||||
|
|
|
@ -51,6 +51,8 @@ Generate dialogue with the following code
|
|||
|
||||
The full model implementation is on [HuggingFace Hub](https://huggingface.co/THUDM/chatglm-6b).
|
||||
|
||||
Or you can download model manually and put at `model` directory.
|
||||
|
||||
### Demo
|
||||
|
||||
We provide a Web demo based on [Gradio](https://gradio.app) and a command line demo in the repo. First clone our repo with:
|
||||
|
|
|
@ -2,8 +2,10 @@ import os
|
|||
import platform
|
||||
from transformers import AutoTokenizer, AutoModel
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
|
||||
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
|
||||
MODEL_ID = "./model" if os.path.exists('./model') else "THUDM/chatglm-6b"
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
|
||||
model = AutoModel.from_pretrained(MODEL_ID, trust_remote_code=True).half().cuda()
|
||||
model = model.eval()
|
||||
|
||||
os_name = platform.system()
|
||||
|
|
94
web_demo.py
94
web_demo.py
|
@ -1,45 +1,77 @@
|
|||
import os
|
||||
from transformers import AutoModel, AutoTokenizer
|
||||
import gradio as gr
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
|
||||
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
|
||||
MODEL_ID = "./model" if os.path.exists('./model') else "THUDM/chatglm-6b"
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
|
||||
model = AutoModel.from_pretrained(MODEL_ID, trust_remote_code=True).half().cuda()
|
||||
model = model.eval()
|
||||
|
||||
MAX_TURNS = 20
|
||||
MAX_BOXES = MAX_TURNS * 2
|
||||
|
||||
WELCOME_PROMPT = [[None, "[ChatGLM-6B]:Welcome, please input text and press enter"]]
|
||||
|
||||
|
||||
def predict(input, max_length, top_p, temperature, history=None):
|
||||
if history is None:
|
||||
history = []
|
||||
for response, history in model.stream_chat(tokenizer, input, history, max_length=max_length, top_p=top_p,
|
||||
temperature=temperature):
|
||||
updates = []
|
||||
def predict(input, max_length, top_p, temperature, history):
|
||||
for _, history in model.stream_chat(
|
||||
tokenizer, input, history,
|
||||
max_length=max_length,
|
||||
top_p=top_p,
|
||||
temperature=temperature,
|
||||
):
|
||||
chatbot = []
|
||||
|
||||
for query, response in history:
|
||||
updates.append(gr.update(visible=True, value="用户:" + query))
|
||||
updates.append(gr.update(visible=True, value="ChatGLM-6B:" + response))
|
||||
if len(updates) < MAX_BOXES:
|
||||
updates = updates + [gr.Textbox.update(visible=False)] * (MAX_BOXES - len(updates))
|
||||
yield [history] + updates
|
||||
chatbot.append([
|
||||
"[用户]:" + query,
|
||||
"[ChatGLM-6B]:" + response
|
||||
])
|
||||
|
||||
if len(chatbot) > MAX_TURNS:
|
||||
chatbot = chatbot[- MAX_TURNS:]
|
||||
|
||||
yield history, WELCOME_PROMPT + chatbot
|
||||
|
||||
|
||||
with gr.Blocks() as demo:
|
||||
state = gr.State([])
|
||||
text_boxes = []
|
||||
for i in range(MAX_BOXES):
|
||||
if i % 2 == 0:
|
||||
text_boxes.append(gr.Markdown(visible=False, label="提问:"))
|
||||
else:
|
||||
text_boxes.append(gr.Markdown(visible=False, label="回复:"))
|
||||
with gr.Blocks(title="ChatGLM-6B", css='#main-chatbot { height: 480px; }') as demo:
|
||||
input_cache = gr.State()
|
||||
history = gr.State([])
|
||||
|
||||
with gr.Row():
|
||||
with gr.Column(scale=4):
|
||||
txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter", lines=11).style(
|
||||
container=False)
|
||||
with gr.Column(scale=1):
|
||||
max_length = gr.Slider(0, 4096, value=2048, step=1.0, label="Maximum length", interactive=True)
|
||||
top_p = gr.Slider(0, 1, value=0.7, step=0.01, label="Top P", interactive=True)
|
||||
temperature = gr.Slider(0, 1, value=0.95, step=0.01, label="Temperature", interactive=True)
|
||||
button = gr.Button("Generate")
|
||||
button.click(predict, [txt, max_length, top_p, temperature, state], [state] + text_boxes)
|
||||
with gr.Column():
|
||||
pass
|
||||
with gr.Column():
|
||||
chatbot = gr.Chatbot(
|
||||
show_label=False,
|
||||
elem_id="main-chatbot"
|
||||
)
|
||||
input = gr.Textbox(
|
||||
show_label=False,
|
||||
placeholder="Input text and press enter",
|
||||
interactive=True,
|
||||
)
|
||||
with gr.Box():
|
||||
max_length = gr.Slider(0, 4096, value=2048, step=1.0, label="Maximum length", interactive=True)
|
||||
top_p = gr.Slider(0, 1, value=0.7, step=0.01, label="Top P", interactive=True)
|
||||
temperature = gr.Slider(0, 1, value=0.95, step=0.01, label="Temperature", interactive=True)
|
||||
with gr.Column():
|
||||
pass
|
||||
|
||||
input.submit(
|
||||
lambda x: ("", x),
|
||||
[input],
|
||||
[input, input_cache]
|
||||
).then(
|
||||
predict,
|
||||
[input_cache, max_length, top_p, temperature, history],
|
||||
[history, chatbot],
|
||||
)
|
||||
|
||||
demo.load(
|
||||
lambda: WELCOME_PROMPT,
|
||||
None,
|
||||
[chatbot]
|
||||
)
|
||||
|
||||
demo.queue().launch(share=False, inbrowser=True)
|
||||
|
|
Loading…
Reference in New Issue