mirror of https://github.com/THUDM/ChatGLM-6B
rewrite web_demo.py with gradio.Chatbot and support load model from local directory
parent
5513dd7d2c
commit
da09ca4dff
|
@ -53,6 +53,8 @@ ChatGLM-6B 使用了和 ChatGPT 相似的技术,针对中文问答和对话进
|
||||||
```
|
```
|
||||||
完整的模型实现可以在 [Hugging Face Hub](https://huggingface.co/THUDM/chatglm-6b) 上查看。如果你从 Hugging Face Hub 上下载checkpoint的速度较慢,也可以从[这里](https://cloud.tsinghua.edu.cn/d/fb9f16d6dc8f482596c2/)手动下载。
|
完整的模型实现可以在 [Hugging Face Hub](https://huggingface.co/THUDM/chatglm-6b) 上查看。如果你从 Hugging Face Hub 上下载checkpoint的速度较慢,也可以从[这里](https://cloud.tsinghua.edu.cn/d/fb9f16d6dc8f482596c2/)手动下载。
|
||||||
|
|
||||||
|
手动下载的模型放置在 `model` 目录下
|
||||||
|
|
||||||
### Demo
|
### Demo
|
||||||
|
|
||||||
我们提供了一个基于 [Gradio](https://gradio.app) 的网页版 Demo 和一个命令行 Demo。使用时首先需要下载本仓库:
|
我们提供了一个基于 [Gradio](https://gradio.app) 的网页版 Demo 和一个命令行 Demo。使用时首先需要下载本仓库:
|
||||||
|
|
|
@ -51,6 +51,8 @@ Generate dialogue with the following code
|
||||||
|
|
||||||
The full model implementation is on [HuggingFace Hub](https://huggingface.co/THUDM/chatglm-6b).
|
The full model implementation is on [HuggingFace Hub](https://huggingface.co/THUDM/chatglm-6b).
|
||||||
|
|
||||||
|
Or you can download model manually and put at `model` directory.
|
||||||
|
|
||||||
### Demo
|
### Demo
|
||||||
|
|
||||||
We provide a Web demo based on [Gradio](https://gradio.app) and a command line demo in the repo. First clone our repo with:
|
We provide a Web demo based on [Gradio](https://gradio.app) and a command line demo in the repo. First clone our repo with:
|
||||||
|
|
|
@ -2,8 +2,10 @@ import os
|
||||||
import platform
|
import platform
|
||||||
from transformers import AutoTokenizer, AutoModel
|
from transformers import AutoTokenizer, AutoModel
|
||||||
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
|
MODEL_ID = "./model" if os.path.exists('./model') else "THUDM/chatglm-6b"
|
||||||
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
|
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
|
||||||
|
model = AutoModel.from_pretrained(MODEL_ID, trust_remote_code=True).half().cuda()
|
||||||
model = model.eval()
|
model = model.eval()
|
||||||
|
|
||||||
os_name = platform.system()
|
os_name = platform.system()
|
||||||
|
|
94
web_demo.py
94
web_demo.py
|
@ -1,45 +1,77 @@
|
||||||
|
import os
|
||||||
from transformers import AutoModel, AutoTokenizer
|
from transformers import AutoModel, AutoTokenizer
|
||||||
import gradio as gr
|
import gradio as gr
|
||||||
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
|
MODEL_ID = "./model" if os.path.exists('./model') else "THUDM/chatglm-6b"
|
||||||
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
|
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
|
||||||
|
model = AutoModel.from_pretrained(MODEL_ID, trust_remote_code=True).half().cuda()
|
||||||
model = model.eval()
|
model = model.eval()
|
||||||
|
|
||||||
MAX_TURNS = 20
|
MAX_TURNS = 20
|
||||||
MAX_BOXES = MAX_TURNS * 2
|
|
||||||
|
WELCOME_PROMPT = [[None, "[ChatGLM-6B]:Welcome, please input text and press enter"]]
|
||||||
|
|
||||||
|
|
||||||
def predict(input, max_length, top_p, temperature, history=None):
|
def predict(input, max_length, top_p, temperature, history):
|
||||||
if history is None:
|
for _, history in model.stream_chat(
|
||||||
history = []
|
tokenizer, input, history,
|
||||||
for response, history in model.stream_chat(tokenizer, input, history, max_length=max_length, top_p=top_p,
|
max_length=max_length,
|
||||||
temperature=temperature):
|
top_p=top_p,
|
||||||
updates = []
|
temperature=temperature,
|
||||||
|
):
|
||||||
|
chatbot = []
|
||||||
|
|
||||||
for query, response in history:
|
for query, response in history:
|
||||||
updates.append(gr.update(visible=True, value="用户:" + query))
|
chatbot.append([
|
||||||
updates.append(gr.update(visible=True, value="ChatGLM-6B:" + response))
|
"[用户]:" + query,
|
||||||
if len(updates) < MAX_BOXES:
|
"[ChatGLM-6B]:" + response
|
||||||
updates = updates + [gr.Textbox.update(visible=False)] * (MAX_BOXES - len(updates))
|
])
|
||||||
yield [history] + updates
|
|
||||||
|
if len(chatbot) > MAX_TURNS:
|
||||||
|
chatbot = chatbot[- MAX_TURNS:]
|
||||||
|
|
||||||
|
yield history, WELCOME_PROMPT + chatbot
|
||||||
|
|
||||||
|
|
||||||
with gr.Blocks() as demo:
|
with gr.Blocks(title="ChatGLM-6B", css='#main-chatbot { height: 480px; }') as demo:
|
||||||
state = gr.State([])
|
input_cache = gr.State()
|
||||||
text_boxes = []
|
history = gr.State([])
|
||||||
for i in range(MAX_BOXES):
|
|
||||||
if i % 2 == 0:
|
|
||||||
text_boxes.append(gr.Markdown(visible=False, label="提问:"))
|
|
||||||
else:
|
|
||||||
text_boxes.append(gr.Markdown(visible=False, label="回复:"))
|
|
||||||
|
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
with gr.Column(scale=4):
|
with gr.Column():
|
||||||
txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter", lines=11).style(
|
pass
|
||||||
container=False)
|
with gr.Column():
|
||||||
with gr.Column(scale=1):
|
chatbot = gr.Chatbot(
|
||||||
max_length = gr.Slider(0, 4096, value=2048, step=1.0, label="Maximum length", interactive=True)
|
show_label=False,
|
||||||
top_p = gr.Slider(0, 1, value=0.7, step=0.01, label="Top P", interactive=True)
|
elem_id="main-chatbot"
|
||||||
temperature = gr.Slider(0, 1, value=0.95, step=0.01, label="Temperature", interactive=True)
|
)
|
||||||
button = gr.Button("Generate")
|
input = gr.Textbox(
|
||||||
button.click(predict, [txt, max_length, top_p, temperature, state], [state] + text_boxes)
|
show_label=False,
|
||||||
|
placeholder="Input text and press enter",
|
||||||
|
interactive=True,
|
||||||
|
)
|
||||||
|
with gr.Box():
|
||||||
|
max_length = gr.Slider(0, 4096, value=2048, step=1.0, label="Maximum length", interactive=True)
|
||||||
|
top_p = gr.Slider(0, 1, value=0.7, step=0.01, label="Top P", interactive=True)
|
||||||
|
temperature = gr.Slider(0, 1, value=0.95, step=0.01, label="Temperature", interactive=True)
|
||||||
|
with gr.Column():
|
||||||
|
pass
|
||||||
|
|
||||||
|
input.submit(
|
||||||
|
lambda x: ("", x),
|
||||||
|
[input],
|
||||||
|
[input, input_cache]
|
||||||
|
).then(
|
||||||
|
predict,
|
||||||
|
[input_cache, max_length, top_p, temperature, history],
|
||||||
|
[history, chatbot],
|
||||||
|
)
|
||||||
|
|
||||||
|
demo.load(
|
||||||
|
lambda: WELCOME_PROMPT,
|
||||||
|
None,
|
||||||
|
[chatbot]
|
||||||
|
)
|
||||||
|
|
||||||
demo.queue().launch(share=False, inbrowser=True)
|
demo.queue().launch(share=False, inbrowser=True)
|
||||||
|
|
Loading…
Reference in New Issue