Browse Source

Add CodeGeeX2

pull/1359/head
Stanislas0 1 year ago
parent
commit
d835c4b001
  1. 6
      README.md
  2. 6
      README_en.md

6
README.md

@ -27,6 +27,12 @@ ChatGLM-6B 开源模型旨在与开源社区一起推动大模型技术发展,
尽管模型在训练的各个阶段都尽力确保数据的合规性和准确性,但由于 ChatGLM-6B 模型规模较小,且模型受概率随机性因素影响,无法保证输出内容的准确性,且模型易被误导(详见[局限性](README.md#局限性))。**本项目不承担开源模型和代码导致的数据安全、舆情风险或发生任何模型被误导、滥用、传播、不当利用而产生的风险和责任。** 尽管模型在训练的各个阶段都尽力确保数据的合规性和准确性,但由于 ChatGLM-6B 模型规模较小,且模型受概率随机性因素影响,无法保证输出内容的准确性,且模型易被误导(详见[局限性](README.md#局限性))。**本项目不承担开源模型和代码导致的数据安全、舆情风险或发生任何模型被误导、滥用、传播、不当利用而产生的风险和责任。**
## 更新信息 ## 更新信息
**[2023/07/25]** 发布 [CodeGeeX2](https://github.com/THUDM/CodeGeeX2) ,基于 ChatGLM2-6B 的代码生成模型,代码能力全面提升,更多特性包括:
* **更强大的代码能力**:CodeGeeX2-6B 进一步经过了 600B 代码数据预训练,相比 CodeGeeX 一代模型,在代码能力上全面提升,[HumanEval-X](https://huggingface.co/datasets/THUDM/humaneval-x) 评测集的六种编程语言均大幅提升 (Python +57%, C++ +71%, Java +54%, JavaScript +83%, Go +56%, Rust +321\%),在Python上达到 35.9\% 的 Pass@1 一次通过率,超越规模更大的 StarCoder-15B。
* **更优秀的模型特性**:继承 ChatGLM2-6B 模型特性,CodeGeeX2-6B 更好支持中英文输入,支持最大 8192 序列长度,推理速度较一代 大幅提升,量化后仅需6GB显存即可运行,支持轻量级本地化部署。
* **更全面的AI编程助手**:CodeGeeX插件([VS Code](https://marketplace.visualstudio.com/items?itemName=aminer.codegeex), [Jetbrains](https://plugins.jetbrains.com/plugin/20587-codegeex))后端升级,支持超过100种编程语言,新增上下文补全、跨文件补全等实用功能。结合 Ask CodeGeeX 交互式AI编程助手,支持中英文对话解决各种编程问题,包括且不限于代码解释、代码翻译、代码纠错、文档生成等,帮助程序员更高效开发。
**[2023/06/25]** 发布 [ChatGLM2-6B](https://github.com/THUDM/ChatGLM2-6B),ChatGLM-6B 的升级版本,在保留了了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上,ChatGLM**2**-6B 引入了如下新特性: **[2023/06/25]** 发布 [ChatGLM2-6B](https://github.com/THUDM/ChatGLM2-6B),ChatGLM-6B 的升级版本,在保留了了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上,ChatGLM**2**-6B 引入了如下新特性:
1. **更强大的性能**:基于 ChatGLM 初代模型的开发经验,我们全面升级了 ChatGLM2-6B 的基座模型。ChatGLM2-6B 使用了 [GLM](https://github.com/THUDM/GLM) 的混合目标函数,经过了 1.4T 中英标识符的预训练与人类偏好对齐训练,[评测结果](#评测结果)显示,相比于初代模型,ChatGLM2-6B 在 MMLU(+23%)、CEval(+33%)、GSM8K(+571%) 、BBH(+60%)等数据集上的性能取得了大幅度的提升,在同尺寸开源模型中具有较强的竞争力。 1. **更强大的性能**:基于 ChatGLM 初代模型的开发经验,我们全面升级了 ChatGLM2-6B 的基座模型。ChatGLM2-6B 使用了 [GLM](https://github.com/THUDM/GLM) 的混合目标函数,经过了 1.4T 中英标识符的预训练与人类偏好对齐训练,[评测结果](#评测结果)显示,相比于初代模型,ChatGLM2-6B 在 MMLU(+23%)、CEval(+33%)、GSM8K(+571%) 、BBH(+60%)等数据集上的性能取得了大幅度的提升,在同尺寸开源模型中具有较强的竞争力。

6
README_en.md

@ -20,6 +20,12 @@ ChatGLM-6B weights are **completely open** for academic research, and **free com
Try the [online demo](https://huggingface.co/spaces/ysharma/ChatGLM-6b_Gradio_Streaming) on Huggingface Spaces. Try the [online demo](https://huggingface.co/spaces/ysharma/ChatGLM-6b_Gradio_Streaming) on Huggingface Spaces.
## Update ## Update
**[2023/07/25]** Release [CodeGeeX2](https://github.com/THUDM/CodeGeeX2), which is based on ChatGLM2-6B and trained on more code data. It has the following features:
* **More Powerful Coding Capabilities**: CodeGeeX2-6B has been further pre-trained on 600B code tokens, which has been comprehensively improved in coding capability compared to the first-generation. On the [HumanEval-X](https://huggingface.co/datasets/THUDM/humaneval-x) benchmark, all six languages have been significantly improved (Python +57%, C++ +71%, Java +54%, JavaScript +83%, Go +56%, Rust +321\%), and in Python it reached 35.9% of Pass@1 one-time pass rate, surpassing the larger StarCoder-15B.
* **More Useful Features**: Inheriting the ChatGLM2-6B model features, CodeGeeX2-6B better supports both Chinese and English prompts, maximum 8192 sequence length, and the inference speed is significantly improved compared to the first-generation. After quantization, it only needs 6GB of GPU memory for inference, thus supports lightweight local deployment.
* **Comprehensive AI Coding Assistant**: The backend of CodeGeeX plugin ([VS Code](https://marketplace.visualstudio.com/items?itemName=aminer.codegeex), [Jetbrains](https://plugins.jetbrains.com/plugin/20587-codegeex)) is upgraded, supporting 100+ programming languages, and adding practical functions such as infilling and cross-file completion. Combined with the "Ask CodeGeeX" interactive AI coding assistant, it can be used to solve various programming problems via Chinese or English dialogue, including but not limited to code summarization, code translation, debugging, and comment generation, which helps increasing the efficiency of developpers.
**[2023/06/25]** Release [ChatGLM2-6B](https://github.com/THUDM/ChatGLM2-6B), the second-generation version of ChatGLM-6B. It retains the smooth conversation flow and low deployment threshold of the first-generation model, while introducing the following new features: **[2023/06/25]** Release [ChatGLM2-6B](https://github.com/THUDM/ChatGLM2-6B), the second-generation version of ChatGLM-6B. It retains the smooth conversation flow and low deployment threshold of the first-generation model, while introducing the following new features:
1. **Stronger Performance**: Based on the development experience of the first-generation ChatGLM model, we have fully upgraded the base model of ChatGLM2-6B. ChatGLM2-6B uses the hybrid objective function of [GLM](https://github.com/THUDM/GLM), and has undergone pre-training with 1.4T bilingual tokens and human preference alignment training. The [evaluation results](README.md#evaluation-results) show that, compared to the first-generation model, ChatGLM2-6B has achieved substantial improvements in performance on datasets like MMLU (+23%), CEval (+33%), GSM8K (+571%), BBH (+60%), showing strong competitiveness among models of the same size. 1. **Stronger Performance**: Based on the development experience of the first-generation ChatGLM model, we have fully upgraded the base model of ChatGLM2-6B. ChatGLM2-6B uses the hybrid objective function of [GLM](https://github.com/THUDM/GLM), and has undergone pre-training with 1.4T bilingual tokens and human preference alignment training. The [evaluation results](README.md#evaluation-results) show that, compared to the first-generation model, ChatGLM2-6B has achieved substantial improvements in performance on datasets like MMLU (+23%), CEval (+33%), GSM8K (+571%), BBH (+60%), showing strong competitiveness among models of the same size.

Loading…
Cancel
Save