mirror of https://github.com/THUDM/ChatGLM-6B
update web_demo
parent
801b1bb576
commit
c9f68cf39a
|
@ -42,4 +42,4 @@ with gr.Blocks() as demo:
|
|||
temperature = gr.Slider(0, 1, value=0.95, step=0.01, label="Temperature", interactive=True)
|
||||
button = gr.Button("Generate")
|
||||
button.click(predict, [txt, max_length, top_p, temperature, state], [state] + text_boxes)
|
||||
demo.queue().launch(share=False, inbrowser=True)
|
||||
demo.queue().launch(server_port=6006, server_name='0.0.0.0', share=False, inbrowser=True)
|
||||
|
|
16
web_demo2.py
16
web_demo2.py
|
@ -21,7 +21,7 @@ MAX_TURNS = 20
|
|||
MAX_BOXES = MAX_TURNS * 2
|
||||
|
||||
|
||||
def predict(input, history=None):
|
||||
def predict(input, max_length, top_p, temperature, history=None):
|
||||
tokenizer, model = get_model()
|
||||
if history is None:
|
||||
history = []
|
||||
|
@ -35,7 +35,8 @@ def predict(input, history=None):
|
|||
message(input, avatar_style="big-smile", key=str(len(history)) + "_user")
|
||||
st.write("AI正在回复:")
|
||||
with st.empty():
|
||||
for response, history in model.stream_chat(tokenizer, input, history):
|
||||
for response, history in model.stream_chat(tokenizer, input, history, max_length=max_length, top_p=top_p,
|
||||
temperature=temperature):
|
||||
query, response = history[-1]
|
||||
st.write(response)
|
||||
|
||||
|
@ -49,6 +50,15 @@ prompt_text = st.text_area(label="用户命令输入",
|
|||
height = 100,
|
||||
placeholder="请在这儿输入您的命令")
|
||||
|
||||
max_length = st.sidebar.slider(
|
||||
'max_length', 0, 4096, 2048, step=1
|
||||
)
|
||||
top_p = st.sidebar.slider(
|
||||
'top_p', 0.0, 1.0, 0.6, step=0.01
|
||||
)
|
||||
temperature = st.sidebar.slider(
|
||||
'temperature', 0.0, 1.0, 0.95, step=0.01
|
||||
)
|
||||
|
||||
if 'state' not in st.session_state:
|
||||
st.session_state['state'] = []
|
||||
|
@ -56,4 +66,4 @@ if 'state' not in st.session_state:
|
|||
if st.button("发送", key="predict"):
|
||||
with st.spinner("AI正在思考,请稍等........"):
|
||||
# text generation
|
||||
st.session_state["state"] = predict(prompt_text, st.session_state["state"])
|
||||
st.session_state["state"] = predict(prompt_text, max_length, top_p, temperature, st.session_state["state"])
|
Loading…
Reference in New Issue