mirror of https://github.com/THUDM/ChatGLM-6B
Add vision demo
parent
a4119fd3ad
commit
b7d5bfe291
|
@ -0,0 +1,65 @@
|
||||||
|
import os
|
||||||
|
import platform
|
||||||
|
import signal
|
||||||
|
from transformers import AutoTokenizer, AutoModel
|
||||||
|
import readline
|
||||||
|
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained("THUDM/visualglm-6b", trust_remote_code=True)
|
||||||
|
model = AutoModel.from_pretrained("THUDM/visualglm-6b", trust_remote_code=True).half().cuda()
|
||||||
|
model = model.eval()
|
||||||
|
|
||||||
|
os_name = platform.system()
|
||||||
|
clear_command = 'cls' if os_name == 'Windows' else 'clear'
|
||||||
|
stop_stream = False
|
||||||
|
|
||||||
|
|
||||||
|
def build_prompt(history, prefix):
|
||||||
|
prompt = prefix
|
||||||
|
for query, response in history:
|
||||||
|
prompt += f"\n\n用户:{query}"
|
||||||
|
prompt += f"\n\nChatGLM-6B:{response}"
|
||||||
|
return prompt
|
||||||
|
|
||||||
|
|
||||||
|
def signal_handler(signal, frame):
|
||||||
|
global stop_stream
|
||||||
|
stop_stream = True
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
global stop_stream
|
||||||
|
while True:
|
||||||
|
history = []
|
||||||
|
prefix = "欢迎使用 VisualGLM-6B 模型,输入图片路径和内容即可进行对话,clear 清空对话历史,stop 终止程序"
|
||||||
|
print(prefix)
|
||||||
|
image_path = input("\n请输入图片路径:")
|
||||||
|
if image_path == "stop":
|
||||||
|
break
|
||||||
|
prefix = prefix + "\n" + image_path
|
||||||
|
query = "描述这张图片。"
|
||||||
|
while True:
|
||||||
|
count = 0
|
||||||
|
for response, history in model.stream_chat(tokenizer, image_path, query, history=history):
|
||||||
|
if stop_stream:
|
||||||
|
stop_stream = False
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
count += 1
|
||||||
|
if count % 8 == 0:
|
||||||
|
os.system(clear_command)
|
||||||
|
print(build_prompt(history, prefix), flush=True)
|
||||||
|
signal.signal(signal.SIGINT, signal_handler)
|
||||||
|
os.system(clear_command)
|
||||||
|
print(build_prompt(history, prefix), flush=True)
|
||||||
|
query = input("\n用户:")
|
||||||
|
if query.strip() == "stop":
|
||||||
|
break
|
||||||
|
if query.strip() == "clear":
|
||||||
|
history = []
|
||||||
|
os.system(clear_command)
|
||||||
|
print(prefix)
|
||||||
|
continue
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
|
@ -0,0 +1,120 @@
|
||||||
|
from transformers import AutoModel, AutoTokenizer
|
||||||
|
import gradio as gr
|
||||||
|
import mdtex2html
|
||||||
|
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained("THUDM/visualglm-6b", trust_remote_code=True)
|
||||||
|
model = AutoModel.from_pretrained("THUDM/visualglm-6b", trust_remote_code=True).half().cuda()
|
||||||
|
model = model.eval()
|
||||||
|
|
||||||
|
"""Override Chatbot.postprocess"""
|
||||||
|
|
||||||
|
|
||||||
|
def postprocess(self, y):
|
||||||
|
if y is None:
|
||||||
|
return []
|
||||||
|
for i, (message, response) in enumerate(y):
|
||||||
|
y[i] = (
|
||||||
|
None if message is None else mdtex2html.convert((message)),
|
||||||
|
None if response is None else mdtex2html.convert(response),
|
||||||
|
)
|
||||||
|
return y
|
||||||
|
|
||||||
|
|
||||||
|
gr.Chatbot.postprocess = postprocess
|
||||||
|
|
||||||
|
|
||||||
|
def parse_text(text):
|
||||||
|
"""copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/"""
|
||||||
|
lines = text.split("\n")
|
||||||
|
lines = [line for line in lines if line != ""]
|
||||||
|
count = 0
|
||||||
|
for i, line in enumerate(lines):
|
||||||
|
if "```" in line:
|
||||||
|
count += 1
|
||||||
|
items = line.split('`')
|
||||||
|
if count % 2 == 1:
|
||||||
|
lines[i] = f'<pre><code class="language-{items[-1]}">'
|
||||||
|
else:
|
||||||
|
lines[i] = f'<br></code></pre>'
|
||||||
|
else:
|
||||||
|
if i > 0:
|
||||||
|
if count % 2 == 1:
|
||||||
|
line = line.replace("`", "\`")
|
||||||
|
line = line.replace("<", "<")
|
||||||
|
line = line.replace(">", ">")
|
||||||
|
line = line.replace(" ", " ")
|
||||||
|
line = line.replace("*", "*")
|
||||||
|
line = line.replace("_", "_")
|
||||||
|
line = line.replace("-", "-")
|
||||||
|
line = line.replace(".", ".")
|
||||||
|
line = line.replace("!", "!")
|
||||||
|
line = line.replace("(", "(")
|
||||||
|
line = line.replace(")", ")")
|
||||||
|
line = line.replace("$", "$")
|
||||||
|
lines[i] = "<br>"+line
|
||||||
|
text = "".join(lines)
|
||||||
|
return text
|
||||||
|
|
||||||
|
|
||||||
|
def predict(input, image_path, chatbot, max_length, top_p, temperature, history):
|
||||||
|
if image_path is None:
|
||||||
|
return [(input, "图片为空!请重新上传图片并重试。")]
|
||||||
|
chatbot.append((parse_text(input), ""))
|
||||||
|
for response, history in model.stream_chat(tokenizer, image_path, input, history, max_length=max_length, top_p=top_p,
|
||||||
|
temperature=temperature):
|
||||||
|
chatbot[-1] = (parse_text(input), parse_text(response))
|
||||||
|
|
||||||
|
yield chatbot, history
|
||||||
|
|
||||||
|
|
||||||
|
def predict_new_image(image_path, chatbot, max_length, top_p, temperature):
|
||||||
|
input, history = "描述这张图片。", []
|
||||||
|
chatbot.append((parse_text(input), ""))
|
||||||
|
for response, history in model.stream_chat(tokenizer, image_path, input, history, max_length=max_length,
|
||||||
|
top_p=top_p,
|
||||||
|
temperature=temperature):
|
||||||
|
chatbot[-1] = (parse_text(input), parse_text(response))
|
||||||
|
|
||||||
|
yield chatbot, history
|
||||||
|
|
||||||
|
|
||||||
|
def reset_user_input():
|
||||||
|
return gr.update(value='')
|
||||||
|
|
||||||
|
|
||||||
|
def reset_state():
|
||||||
|
return None, [], []
|
||||||
|
|
||||||
|
|
||||||
|
with gr.Blocks() as demo:
|
||||||
|
gr.HTML("""<h1 align="center">VisualGLM</h1>""")
|
||||||
|
|
||||||
|
image_path = gr.Image(type="filepath", label="Image Prompt", value=None)
|
||||||
|
chatbot = gr.Chatbot()
|
||||||
|
with gr.Row():
|
||||||
|
with gr.Column(scale=4):
|
||||||
|
with gr.Column(scale=12):
|
||||||
|
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style(
|
||||||
|
container=False)
|
||||||
|
with gr.Column(min_width=32, scale=1):
|
||||||
|
submitBtn = gr.Button("Submit", variant="primary")
|
||||||
|
with gr.Column(scale=1):
|
||||||
|
emptyBtn = gr.Button("Clear History")
|
||||||
|
max_length = gr.Slider(0, 4096, value=2048, step=1.0, label="Maximum length", interactive=True)
|
||||||
|
top_p = gr.Slider(0, 1, value=0.4, step=0.01, label="Top P", interactive=True)
|
||||||
|
temperature = gr.Slider(0, 1, value=0.8, step=0.01, label="Temperature", interactive=True)
|
||||||
|
|
||||||
|
history = gr.State([])
|
||||||
|
|
||||||
|
submitBtn.click(predict, [user_input, image_path, chatbot, max_length, top_p, temperature, history], [chatbot, history],
|
||||||
|
show_progress=True)
|
||||||
|
|
||||||
|
image_path.upload(predict_new_image, [image_path, chatbot, max_length, top_p, temperature], [chatbot, history],
|
||||||
|
show_progress=True)
|
||||||
|
image_path.clear(reset_state, outputs=[image_path, chatbot, history], show_progress=True)
|
||||||
|
|
||||||
|
submitBtn.click(reset_user_input, [], [user_input])
|
||||||
|
|
||||||
|
emptyBtn.click(reset_state, outputs=[image_path, chatbot, history], show_progress=True)
|
||||||
|
|
||||||
|
demo.queue().launch(share=False, inbrowser=True)
|
Loading…
Reference in New Issue