mirror of https://github.com/THUDM/ChatGLM-6B
duzx16
2 years ago
2 changed files with 185 additions and 0 deletions
@ -0,0 +1,65 @@ |
|||||||
|
import os |
||||||
|
import platform |
||||||
|
import signal |
||||||
|
from transformers import AutoTokenizer, AutoModel |
||||||
|
import readline |
||||||
|
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained("THUDM/visualglm-6b", trust_remote_code=True) |
||||||
|
model = AutoModel.from_pretrained("THUDM/visualglm-6b", trust_remote_code=True).half().cuda() |
||||||
|
model = model.eval() |
||||||
|
|
||||||
|
os_name = platform.system() |
||||||
|
clear_command = 'cls' if os_name == 'Windows' else 'clear' |
||||||
|
stop_stream = False |
||||||
|
|
||||||
|
|
||||||
|
def build_prompt(history, prefix): |
||||||
|
prompt = prefix |
||||||
|
for query, response in history: |
||||||
|
prompt += f"\n\n用户:{query}" |
||||||
|
prompt += f"\n\nChatGLM-6B:{response}" |
||||||
|
return prompt |
||||||
|
|
||||||
|
|
||||||
|
def signal_handler(signal, frame): |
||||||
|
global stop_stream |
||||||
|
stop_stream = True |
||||||
|
|
||||||
|
|
||||||
|
def main(): |
||||||
|
global stop_stream |
||||||
|
while True: |
||||||
|
history = [] |
||||||
|
prefix = "欢迎使用 VisualGLM-6B 模型,输入图片路径和内容即可进行对话,clear 清空对话历史,stop 终止程序" |
||||||
|
print(prefix) |
||||||
|
image_path = input("\n请输入图片路径:") |
||||||
|
if image_path == "stop": |
||||||
|
break |
||||||
|
prefix = prefix + "\n" + image_path |
||||||
|
query = "描述这张图片。" |
||||||
|
while True: |
||||||
|
count = 0 |
||||||
|
for response, history in model.stream_chat(tokenizer, image_path, query, history=history): |
||||||
|
if stop_stream: |
||||||
|
stop_stream = False |
||||||
|
break |
||||||
|
else: |
||||||
|
count += 1 |
||||||
|
if count % 8 == 0: |
||||||
|
os.system(clear_command) |
||||||
|
print(build_prompt(history, prefix), flush=True) |
||||||
|
signal.signal(signal.SIGINT, signal_handler) |
||||||
|
os.system(clear_command) |
||||||
|
print(build_prompt(history, prefix), flush=True) |
||||||
|
query = input("\n用户:") |
||||||
|
if query.strip() == "stop": |
||||||
|
break |
||||||
|
if query.strip() == "clear": |
||||||
|
history = [] |
||||||
|
os.system(clear_command) |
||||||
|
print(prefix) |
||||||
|
continue |
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__": |
||||||
|
main() |
@ -0,0 +1,120 @@ |
|||||||
|
from transformers import AutoModel, AutoTokenizer |
||||||
|
import gradio as gr |
||||||
|
import mdtex2html |
||||||
|
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained("THUDM/visualglm-6b", trust_remote_code=True) |
||||||
|
model = AutoModel.from_pretrained("THUDM/visualglm-6b", trust_remote_code=True).half().cuda() |
||||||
|
model = model.eval() |
||||||
|
|
||||||
|
"""Override Chatbot.postprocess""" |
||||||
|
|
||||||
|
|
||||||
|
def postprocess(self, y): |
||||||
|
if y is None: |
||||||
|
return [] |
||||||
|
for i, (message, response) in enumerate(y): |
||||||
|
y[i] = ( |
||||||
|
None if message is None else mdtex2html.convert((message)), |
||||||
|
None if response is None else mdtex2html.convert(response), |
||||||
|
) |
||||||
|
return y |
||||||
|
|
||||||
|
|
||||||
|
gr.Chatbot.postprocess = postprocess |
||||||
|
|
||||||
|
|
||||||
|
def parse_text(text): |
||||||
|
"""copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/""" |
||||||
|
lines = text.split("\n") |
||||||
|
lines = [line for line in lines if line != ""] |
||||||
|
count = 0 |
||||||
|
for i, line in enumerate(lines): |
||||||
|
if "```" in line: |
||||||
|
count += 1 |
||||||
|
items = line.split('`') |
||||||
|
if count % 2 == 1: |
||||||
|
lines[i] = f'<pre><code class="language-{items[-1]}">' |
||||||
|
else: |
||||||
|
lines[i] = f'<br></code></pre>' |
||||||
|
else: |
||||||
|
if i > 0: |
||||||
|
if count % 2 == 1: |
||||||
|
line = line.replace("`", "\`") |
||||||
|
line = line.replace("<", "<") |
||||||
|
line = line.replace(">", ">") |
||||||
|
line = line.replace(" ", " ") |
||||||
|
line = line.replace("*", "*") |
||||||
|
line = line.replace("_", "_") |
||||||
|
line = line.replace("-", "-") |
||||||
|
line = line.replace(".", ".") |
||||||
|
line = line.replace("!", "!") |
||||||
|
line = line.replace("(", "(") |
||||||
|
line = line.replace(")", ")") |
||||||
|
line = line.replace("$", "$") |
||||||
|
lines[i] = "<br>"+line |
||||||
|
text = "".join(lines) |
||||||
|
return text |
||||||
|
|
||||||
|
|
||||||
|
def predict(input, image_path, chatbot, max_length, top_p, temperature, history): |
||||||
|
if image_path is None: |
||||||
|
return [(input, "图片为空!请重新上传图片并重试。")] |
||||||
|
chatbot.append((parse_text(input), "")) |
||||||
|
for response, history in model.stream_chat(tokenizer, image_path, input, history, max_length=max_length, top_p=top_p, |
||||||
|
temperature=temperature): |
||||||
|
chatbot[-1] = (parse_text(input), parse_text(response)) |
||||||
|
|
||||||
|
yield chatbot, history |
||||||
|
|
||||||
|
|
||||||
|
def predict_new_image(image_path, chatbot, max_length, top_p, temperature): |
||||||
|
input, history = "描述这张图片。", [] |
||||||
|
chatbot.append((parse_text(input), "")) |
||||||
|
for response, history in model.stream_chat(tokenizer, image_path, input, history, max_length=max_length, |
||||||
|
top_p=top_p, |
||||||
|
temperature=temperature): |
||||||
|
chatbot[-1] = (parse_text(input), parse_text(response)) |
||||||
|
|
||||||
|
yield chatbot, history |
||||||
|
|
||||||
|
|
||||||
|
def reset_user_input(): |
||||||
|
return gr.update(value='') |
||||||
|
|
||||||
|
|
||||||
|
def reset_state(): |
||||||
|
return None, [], [] |
||||||
|
|
||||||
|
|
||||||
|
with gr.Blocks() as demo: |
||||||
|
gr.HTML("""<h1 align="center">VisualGLM</h1>""") |
||||||
|
|
||||||
|
image_path = gr.Image(type="filepath", label="Image Prompt", value=None) |
||||||
|
chatbot = gr.Chatbot() |
||||||
|
with gr.Row(): |
||||||
|
with gr.Column(scale=4): |
||||||
|
with gr.Column(scale=12): |
||||||
|
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style( |
||||||
|
container=False) |
||||||
|
with gr.Column(min_width=32, scale=1): |
||||||
|
submitBtn = gr.Button("Submit", variant="primary") |
||||||
|
with gr.Column(scale=1): |
||||||
|
emptyBtn = gr.Button("Clear History") |
||||||
|
max_length = gr.Slider(0, 4096, value=2048, step=1.0, label="Maximum length", interactive=True) |
||||||
|
top_p = gr.Slider(0, 1, value=0.4, step=0.01, label="Top P", interactive=True) |
||||||
|
temperature = gr.Slider(0, 1, value=0.8, step=0.01, label="Temperature", interactive=True) |
||||||
|
|
||||||
|
history = gr.State([]) |
||||||
|
|
||||||
|
submitBtn.click(predict, [user_input, image_path, chatbot, max_length, top_p, temperature, history], [chatbot, history], |
||||||
|
show_progress=True) |
||||||
|
|
||||||
|
image_path.upload(predict_new_image, [image_path, chatbot, max_length, top_p, temperature], [chatbot, history], |
||||||
|
show_progress=True) |
||||||
|
image_path.clear(reset_state, outputs=[image_path, chatbot, history], show_progress=True) |
||||||
|
|
||||||
|
submitBtn.click(reset_user_input, [], [user_input]) |
||||||
|
|
||||||
|
emptyBtn.click(reset_state, outputs=[image_path, chatbot, history], show_progress=True) |
||||||
|
|
||||||
|
demo.queue().launch(share=False, inbrowser=True) |
Loading…
Reference in new issue