[Document] 更新Mac部署

[Document] 更新Mac部署
- FILE: README.md; README_en.md
- ADD: OPENMP; MPS

# 具体内容

以[chatglm-6b-int4](https://huggingface.co/THUDM/chatglm-6b-int4)量化模型为例,做如下配置:

- 安装libomp的步骤;
- 对量化后模型等配置gcc编译项;
- 量化后模型启用MPS的解释。
pull/899/head
Yifan 2 years ago
parent f1fa8db8f2
commit b13f1a63f3

@ -240,7 +240,7 @@ else:
source_code, kernel_file)
```
> !注意如果你之前运行过失败过最好清一下Huggingface对缓存i.e. `rm -rf ${HOME}/.cache/huggingface/modules/transformers_modules/chatglm-6b-int4`。由于使用了`rm`命令,请明确知道自己在删除什么。
> 注意如果你之前运行过失败过最好清一下Huggingface的缓存i.e. `rm -rf ${HOME}/.cache/huggingface/modules/transformers_modules/chatglm-6b-int4`。由于使用了`rm`命令,请明确知道自己在删除什么。
### Mac 上的 GPU 加速
对于搭载了Apple Silicon的Mac以及MacBook可以使用 MPS 后端来在 GPU 上运行 ChatGLM-6B。需要参考 Apple 的 [官方说明](https://developer.apple.com/metal/pytorch) 安装 PyTorch-Nightly。
@ -254,7 +254,7 @@ model = AutoModel.from_pretrained("your local path", trust_remote_code=True).hal
model = AutoModel.from_pretrained("your local path", trust_remote_code=True).float().to('mps')
```
> 注意上述方法在非量化版中运行没有问题。量化版模型在MPS设备运行可以关注[这个](https://github.com/THUDM/ChatGLM-6B/issues/462)ISSUE这主要是[kernel](https://huggingface.co/THUDM/chatglm-6b/blob/658202d88ac4bb782b99e99ac3adff58b4d0b813/quantization.py#L27)的原因,可以解包这个`ELF`文件看到是CUDA的实现。
> 注意上述方法在非量化版中运行没有问题。量化版模型在MPS设备运行可以关注[这个](https://github.com/THUDM/ChatGLM-6B/issues/462)ISSUE这主要是[kernel](https://huggingface.co/THUDM/chatglm-6b/blob/658202d88ac4bb782b99e99ac3adff58b4d0b813/quantization.py#L27)的原因,可以解包这个`ELF`文件看到是CUDA的实现。
### 多卡部署
如果你有多张 GPU但是每张 GPU 的显存大小都不足以容纳完整的模型那么可以将模型切分在多张GPU上。首先安装 accelerate: `pip install accelerate`,然后通过如下方法加载模型:

@ -188,6 +188,58 @@ model = AutoModel.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=Tru
If your encounter the error `Could not find module 'nvcuda.dll'` or `RuntimeError: Unknown platform: darwin`(MacOS), please [load the model locally](README_en.md#load-the-model-locally).
### CPU Deployment on Mac
The default Mac enviroment does not support Openmp. One may encounter such warning/errors when execute the `AutoModel.from_pretrained(...)` command:
```sh
clang: error: unsupported option '-fopenmp'
clang: error: unsupported option '-fopenmp'
```
Take the quantified int4 version [chatglm-6b-int4](https://huggingface.co/THUDM/chatglm-6b-int4) for example, the following extra steps are needed:
1. Install `libomp`;
2. Configure `gcc`.
```bash
# STEP 1: install libopenmp, check `https://mac.r-project.org/openmp/` for details
## Assumption: `gcc -v >= 14.x`, read the R-Poject before run the code:
curl -O https://mac.r-project.org/openmp/openmp-14.0.6-darwin20-Release.tar.gz
sudo tar fvxz openmp-14.0.6-darwin20-Release.tar.gz -C /
## Four files are installed:
# usr/local/lib/libomp.dylib
# usr/local/include/ompt.h
# usr/local/include/omp.h
# usr/local/include/omp-tools.h
```
For `chatglm-6b-int4`, modify the [quantization.py](https://huggingface.co/THUDM/chatglm-6b-int4/blob/main/quantization.py)file. In the file, change the `gcc -O3 -fPIC -pthread -fopenmp -std=c99` configuration to `gcc -O3 -fPIC -Xclang -fopenmp -pthread -lomp -std=c99`[corresponding python code](https://huggingface.co/THUDM/chatglm-6b-int4/blob/63d66b0572d11cedd5574b38da720299599539b3/quantization.py#L168), i.e.:
```python
# STEP
## Change the line contains `gcc -O3 -fPIC -pthread -fopenmp -std=c99` to:
compile_command = "gcc -O3 -fPIC -Xclang -fopenmp -pthread -lomp -std=c99 {} -shared -o {}".format(source_code, kernel_file)
```
For production code, one could use `platform` library to make it neater:
```python
## import platform just after `import os`
import platform
## ...
## change the corresponding lines to:
if platform.uname()[0] == 'Darwin':
compile_command = "gcc -O3 -fPIC -Xclang -fopenmp -pthread -lomp -std=c99-o {}".format(
source_code, kernel_file)
else:
compile_command = "gcc -O3 -fPIC -pthread -fopenmp -std=c99 {} -shared -o {}".format(
source_code, kernel_file)
```
> Notice: If you have run the `chatglm` project and failed, you may want to clean the cache of Huggingface before your next try, i.e. `rm -rf ${HOME}/.cache/huggingface/modules/transformers_modules/chatglm-6b-int4`. Since `rm` is used, please MAKE SURE that the command deletes the right files.
### GPU Inference on Mac
For Macs (and MacBooks) with Apple Silicon, it is possible to use the MPS backend to run ChatGLM-6B on the GPU. First, you need to refer to Apple's [official instructions](https://developer.apple.com/metal/pytorch) to install PyTorch-Nightly.
@ -195,8 +247,17 @@ Currently you must [load the model locally](README_en.md#load-the-model-locally)
```python
model = AutoModel.from_pretrained("your local path", trust_remote_code=True).half().to('mps')
```
For Mac users with Mac >= 13.3, one may encounter errors related to `half()` method. Use `float()` instead:
```python
model = AutoModel.from_pretrained("your local path", trust_remote_code=True).float().to('mps')
```
Then you can use GPU-accelerated model inference on Mac.
> Notice: there is no promblem to run the non-quantified version of ChatGLM with MPS. One could check [this issue](https://github.com/THUDM/ChatGLM-6B/issues/462) to run the quantified version with MPS as the backend (and get `ERRORS`). Unzip/unpack [kernel](https://huggingface.co/THUDM/chatglm-6b/blob/658202d88ac4bb782b99e99ac3adff58b4d0b813/quantization.py#L27) as an `ELF` file shows its backend is `cuda`.
### Multi-GPU Deployment
If you have multiple GPUs, but the memory size of each GPU is not sufficient to accommodate the entire model, you can split the model across multiple GPUs.

Loading…
Cancel
Save