Update PROJECT.md

pull/739/head
duzx16 2 years ago
parent edb127326a
commit 9f571c42f2

@ -1,21 +1,27 @@
# 友情链接
以下是部分基于本仓库开发的开源项目:
对 ChatGLM 进行加速或者重新实现的开源项目:
* [SwissArmyTransformer](https://github.com/THUDM/SwissArmyTransformer): 一个Transformer统一编程框架ChatGLM-6B已经在SAT中进行实现并可以进行P-tuning微调。
* [chatgpt_academic](https://github.com/binary-husky/chatgpt_academic): 支持ChatGLM-6B的学术写作与编程工具箱具有模块化和多线程调用LLM的特点可并行调用多种LLM。
* [ChatGLM-MNN](https://github.com/wangzhaode/ChatGLM-MNN): 一个基于 MNN 的 ChatGLM-6B C++ 推理实现,支持根据显存大小自动分配计算任务给 GPU 和 CPU
* [ChatGLM-Tuning](https://github.com/mymusise/ChatGLM-Tuning): 基于 LoRA 对 ChatGLM-6B 进行微调。类似的项目还包括 [Humanable ChatGLM/GPT Fine-tuning | ChatGLM 微调](https://github.com/hscspring/hcgf)
* [langchain-ChatGLM](https://github.com/imClumsyPanda/langchain-ChatGLM):基于本地知识的 ChatGLM 应用基于LangChain
* [bibliothecarius](https://github.com/coderabbit214/bibliothecarius)快速构建服务以集成您的本地数据和AI模型支持ChatGLM等本地化模型接入。
* [闻达](https://github.com/l15y/wenda):大型语言模型调用平台,基于 ChatGLM-6B 实现了类 ChatPDF 功能
* [JittorLLMs](https://github.com/Jittor/JittorLLMs)最低3G显存或者没有显卡都可运行 ChatGLM-6B FP16 支持Linux、windows、Mac部署
* [ChatGLM-Finetuning](https://github.com/liucongg/ChatGLM-Finetuning)基于ChatGLM-6B模型进行下游具体任务微调涉及Freeze、Lora、P-tuning等并进行实验效果对比。
* [InstructGLM](https://github.com/yanqiangmiffy/InstructGLM)基于ChatGLM-6B进行指令学习汇总开源中英文指令数据基于Lora进行指令数据微调开放了Alpaca、Belle微调后的Lora权重修复web_demo重复问题
* [ChatGLM-web](https://github.com/NCZkevin/chatglm-web)基于FastAPI和Vue3搭建的ChatGLM演示网站(支持chatglm流式输出、前端调整模型参数、上下文选择、保存图片、知识库问答等功能)
基于或使用了 ChatGLM-6B 的开源项目:
* [chatgpt_academic](https://github.com/binary-husky/chatgpt_academic): 支持ChatGLM-6B的学术写作与编程工具箱具有模块化和多线程调用LLM的特点可并行调用多种LLM。
* [闻达](https://github.com/l15y/wenda):大型语言模型调用平台,基于 ChatGLM-6B 实现了类 ChatPDF 功能
* [glm-bot](https://github.com/initialencounter/glm-bot)将ChatGLM接入Koishi可在各大聊天平台上调用ChatGLM
* [Chinese-LangChain](https://github.com/yanqiangmiffy/Chinese-LangChain):中文langchain项目基于ChatGLM-6b+langchain实现本地化知识库检索与智能答案生成增加web search功能、知识库选择功能和支持知识增量更新
* [bibliothecarius](https://github.com/coderabbit214/bibliothecarius)快速构建服务以集成您的本地数据和AI模型支持ChatGLM等本地化模型接入。
* [langchain-ChatGLM](https://github.com/imClumsyPanda/langchain-ChatGLM):基于本地知识的 ChatGLM 应用基于LangChain
* [ChatGLM-web](https://github.com/NCZkevin/chatglm-web)基于FastAPI和Vue3搭建的ChatGLM演示网站(支持chatglm流式输出、前端调整模型参数、上下文选择、保存图片、知识库问答等功能)
对 ChatGLM-6B 进行微调的开源项目:
* [InstructGLM](https://github.com/yanqiangmiffy/InstructGLM)基于ChatGLM-6B进行指令学习汇总开源中英文指令数据基于Lora进行指令数据微调开放了Alpaca、Belle微调后的Lora权重修复web_demo重复问题
* [ChatGLM-Finetuning](https://github.com/liucongg/ChatGLM-Finetuning)基于ChatGLM-6B模型进行下游具体任务微调涉及Freeze、Lora、P-tuning等并进行实验效果对比。
* [ChatGLM-Tuning](https://github.com/mymusise/ChatGLM-Tuning): 基于 LoRA 对 ChatGLM-6B 进行微调。类似的项目还包括 [Humanable ChatGLM/GPT Fine-tuning | ChatGLM 微调](https://github.com/hscspring/hcgf)
以下是部分针对本项目的教程/文档:
针对 ChatGLM-6B 的教程/文档:
* [Windows部署文档](https://github.com/ZhangErling/ChatGLM-6B/blob/main/deployment_windows.md)
* [ChatGLM-6B 的部署与微调教程 @ModelWhale平台](https://www.heywhale.com/mw/project/6436d82948f7da1fee2be59e)
* [搭建深度学习docker容器 - Luck_zy](https://www.luckzym.com/tags/ChatGLM-6B/)
* [搭建深度学习docker容器以运行 ChatGLM-6B - Luck_zy](https://www.luckzym.com/tags/ChatGLM-6B/)

@ -19,7 +19,16 @@ ChatGLM-6B 使用了和 ChatGPT 相似的技术,针对中文问答和对话进
*Read this in [English](README_en.md).*
## 友情链接
部分基于本仓库开发的开源项目参见 [PROJECT.md](PROJECT.md)
对 ChatGLM 进行加速的开源项目:
* [ChatGLM-MNN](https://github.com/wangzhaode/ChatGLM-MNN): 一个基于 MNN 的 ChatGLM-6B C++ 推理实现,支持根据显存大小自动分配计算任务给 GPU 和 CPU
* [JittorLLMs](https://github.com/Jittor/JittorLLMs)最低3G显存或者没有显卡都可运行 ChatGLM-6B FP16 支持Linux、windows、Mac部署
基于或使用了 ChatGLM-6B 的开源项目:
* [闻达](https://github.com/l15y/wenda):大型语言模型调用平台,基于 ChatGLM-6B 实现了类 ChatPDF 功能
* [chatgpt_academic](https://github.com/binary-husky/chatgpt_academic): 支持ChatGLM-6B的学术写作与编程工具箱具有模块化和多线程调用LLM的特点可并行调用多种LLM。
* [glm-bot](https://github.com/initialencounter/glm-bot)将ChatGLM接入Koishi可在各大聊天平台上调用ChatGLM
更多开源项目参见 [PROJECT.md](PROJECT.md)
如果你有其他好的项目/教程的话,欢迎参照上述格式添加到 README 中并提出 [Pull Request](https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request-from-a-fork)。

Loading…
Cancel
Save