pull/1276/merge
Jiahao Li 2024-06-27 18:15:15 +08:00 committed by GitHub
commit 9df8d8cd3c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 3 additions and 0 deletions

View File

@ -1,6 +1,7 @@
# 友情链接
对 ChatGLM 进行加速或者重新实现的开源项目:
* [chatglm.cpp](https://github.com/li-plus/chatglm.cpp): 类似 llama.cpp 的 CPU 量化加速推理方案,实现 Mac 笔记本上实时对话
* [lyraChatGLM](https://huggingface.co/TMElyralab/lyraChatGLM): 对 ChatGLM-6B 进行推理加速,最高可以实现 9000+ tokens/s 的推理速度
* [SwissArmyTransformer](https://github.com/THUDM/SwissArmyTransformer): 一个Transformer统一编程框架ChatGLM-6B已经在SAT中进行实现并可以进行P-tuning微调。
* [ChatGLM-MNN](https://github.com/wangzhaode/ChatGLM-MNN): 一个基于 MNN 的 ChatGLM-6B C++ 推理实现,支持根据显存大小自动分配计算任务给 GPU 和 CPU

View File

@ -99,6 +99,7 @@ ChatGLM-6B 开源模型旨在与开源社区一起推动大模型技术发展,
## 友情链接
对 ChatGLM 进行加速的开源项目:
* [chatglm.cpp](https://github.com/li-plus/chatglm.cpp): 类似 llama.cpp 的 CPU 量化加速推理方案,实现 Mac 笔记本上实时对话
* [lyraChatGLM](https://huggingface.co/TMElyralab/lyraChatGLM): 对 ChatGLM-6B 进行推理加速,最高可以实现 9000+ tokens/s 的推理速度
* [ChatGLM-MNN](https://github.com/wangzhaode/ChatGLM-MNN): 一个基于 MNN 的 ChatGLM-6B C++ 推理实现,支持根据显存大小自动分配计算任务给 GPU 和 CPU
* [JittorLLMs](https://github.com/Jittor/JittorLLMs)最低3G显存或者没有显卡都可运行 ChatGLM-6B FP16 支持Linux、windows、Mac部署

View File

@ -96,6 +96,7 @@ For more update info, please refer to [UPDATE.md](UPDATE.md).
## Projects
Open source projects that accelerate ChatGLM:
* [chatglm.cpp](https://github.com/li-plus/chatglm.cpp): Real-time CPU inference on a MacBook accelerated by quantization, similar to llama.cpp.
* [lyraChatGLM](https://huggingface.co/TMElyralab/lyraChatGLM): Inference acceleration for ChatGLM-6B, up to 9000+ tokens/s inference speed.
* [ChatGLM-MNN](https://github.com/wangzhaode/ChatGLM-MNN): An MNN-based implementation of ChatGLM-6B C++ inference, which supports automatic allocation of computing tasks to GPU and CPU according to the size of GPU memory
* [JittorLLMs](https://github.com/Jittor/JittorLLMs): Running ChatGLM-6B in FP16 with a minimum of 3G GPU memory or no GPU at all, with Linux, windows, and Mac support