Browse Source

Add english update

pull/1252/merge
duzx16 1 year ago
parent
commit
9d56e5797d
  1. 8
      README_en.md

8
README_en.md

@ -18,6 +18,14 @@ In order to facilitate downstream developers to customize the model for their ow
Try the [online demo](https://huggingface.co/spaces/ysharma/ChatGLM-6b_Gradio_Streaming) on Huggingface Spaces. Try the [online demo](https://huggingface.co/spaces/ysharma/ChatGLM-6b_Gradio_Streaming) on Huggingface Spaces.
## Update ## Update
**[2023/06/25]** Release [ChatGLM2-6B](https://github.com/THUDM/ChatGLM2-6B), the second-generation version of ChatGLM-6B. It retains the smooth conversation flow and low deployment threshold of the first-generation model, while introducing the following new features:
1. **Stronger Performance**: Based on the development experience of the first-generation ChatGLM model, we have fully upgraded the base model of ChatGLM2-6B. ChatGLM2-6B uses the hybrid objective function of [GLM](https://github.com/THUDM/GLM), and has undergone pre-training with 1.4T bilingual tokens and human preference alignment training. The [evaluation results](README.md#evaluation-results) show that, compared to the first-generation model, ChatGLM2-6B has achieved substantial improvements in performance on datasets like MMLU (+23%), CEval (+33%), GSM8K (+571%), BBH (+60%), showing strong competitiveness among models of the same size.
2. **Longer Context**: Based on [FlashAttention](https://github.com/HazyResearch/flash-attention) technique, we have extended the context length of the base model from 2K in ChatGLM-6B to 32K, and trained with a context length of 8K during the dialogue alignment, allowing for more rounds of dialogue. However, the current version of ChatGLM2-6B has limited understanding of single-round ultra-long documents, which we will focus on optimizing in future iterations.
3. **More Efficient Inference**: Based on [Multi-Query Attention](http://arxiv.org/abs/1911.02150) technique, ChatGLM2-6B has more efficient inference speed and lower GPU memory usage: under the official implementation, the inference speed has increased by 42% compared to the first generation; under INT4 quantization, the dialogue length supported by 6G GPU memory has increased from 1K to 8K.
Fore more information, please refer to [ChatGLM2-6B](https://github.com/THUDM/ChatGLM2-6B).
**[2023/05/17]** Release [VisualGLM-6B](https://github.com/THUDM/VisualGLM-6B), a multimodal conversational language model supporting image understanding. **[2023/05/17]** Release [VisualGLM-6B](https://github.com/THUDM/VisualGLM-6B), a multimodal conversational language model supporting image understanding.
![](resources/visualglm.png) ![](resources/visualglm.png)

Loading…
Cancel
Save