mirror of https://github.com/THUDM/ChatGLM-6B
Add P-Tuning v2
parent
323ce7c865
commit
968a30672a
25
README.md
25
README.md
|
@ -10,20 +10,12 @@ ChatGLM-6B 使用了和 ChatGPT 相似的技术,针对中文问答和对话进
|
|||
*Read this in [English](README_en.md).*
|
||||
|
||||
## 更新信息
|
||||
**[2023/03/31]** 增加基于 P-Tuning-v2 的微调实现,最低只需 8GB 显存即可进行模型微调。详见[模型微调](ptuning/README.md)。
|
||||
|
||||
**[2023/03/23]** 增加API部署(感谢 [@LemonQu-GIT](https://github.com/LemonQu-GIT))。增加Embedding量化模型[ChatGLM-6B-INT4-QE](https://huggingface.co/THUDM/chatglm-6b-int4-qe)。增加对基于Apple Silicon的Mac上GPU加速的支持。
|
||||
|
||||
**[2023/03/19]** 增加流式输出接口 `stream_chat`,已更新到网页版和命令行 Demo。修复输出中的中文标点。增加量化后的模型 [ChatGLM-6B-INT4](https://huggingface.co/THUDM/chatglm-6b-int4)
|
||||
|
||||
## 友情链接
|
||||
以下是部分基于本仓库开发的开源项目:
|
||||
* [ChatGLM-MNN](https://github.com/wangzhaode/ChatGLM-MNN): 一个基于 MNN 的 ChatGLM-6B C++ 推理实现,支持根据显存大小自动分配计算任务给 GPU 和 CPU
|
||||
* [ChatGLM-Tuning](https://github.com/mymusise/ChatGLM-Tuning): 基于 LoRA 对 ChatGLM-6B 进行微调
|
||||
|
||||
以下是部分针对本项目的教程/文档:
|
||||
* [Windows部署文档](https://github.com/ZhangErling/ChatGLM-6B/blob/main/deployment_windows.md)
|
||||
|
||||
如果你有其他好的项目/教程的话,欢迎参照上述格式添加到README中并提出 [PR](https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request-from-a-fork).
|
||||
|
||||
## 使用方式
|
||||
|
||||
### 硬件需求
|
||||
|
@ -171,6 +163,9 @@ model = AutoModel.from_pretrained("your local path", trust_remote_code=True).hal
|
|||
```
|
||||
即可使用在 Mac 上使用 GPU 加速模型推理。
|
||||
|
||||
## 模型微调
|
||||
详见 [ptuning/README.md](ptuning/README.md)。
|
||||
|
||||
## ChatGLM-6B 示例
|
||||
|
||||
以下是一些使用 `web_demo.py` 得到的示例截图。更多 ChatGLM-6B 的可能,等待你来探索发现!
|
||||
|
@ -259,6 +254,16 @@ model = AutoModel.from_pretrained("your local path", trust_remote_code=True).hal
|
|||
|
||||
本仓库的代码依照 [Apache-2.0](LICENSE) 协议开源,ChatGLM-6B 模型的权重的使用则需要遵循 [Model License](MODEL_LICENSE)。
|
||||
|
||||
## 友情链接
|
||||
以下是部分基于本仓库开发的开源项目:
|
||||
* [ChatGLM-MNN](https://github.com/wangzhaode/ChatGLM-MNN): 一个基于 MNN 的 ChatGLM-6B C++ 推理实现,支持根据显存大小自动分配计算任务给 GPU 和 CPU
|
||||
* [ChatGLM-Tuning](https://github.com/mymusise/ChatGLM-Tuning): 基于 LoRA 对 ChatGLM-6B 进行微调
|
||||
|
||||
以下是部分针对本项目的教程/文档:
|
||||
* [Windows部署文档](https://github.com/ZhangErling/ChatGLM-6B/blob/main/deployment_windows.md)
|
||||
|
||||
如果你有其他好的项目/教程的话,欢迎参照上述格式添加到README中并提出 [PR](https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request-from-a-fork).
|
||||
|
||||
## 引用
|
||||
|
||||
如果你觉得我们的工作有帮助的话,请考虑引用下列论文
|
||||
|
|
|
@ -0,0 +1,70 @@
|
|||
# ChatGLM-6B-PT
|
||||
本仓库实现了对于 ChatGLM-6B 模型基于 [P-Tuning v2](https://github.com/THUDM/P-tuning-v2) 的微调。P-Tuning v2将需要微调的参数量减少到原来的0.1%,再通过模型量化、Gradient Checkpoint等方法,最低只需要 8GB 显存即可运行。
|
||||
|
||||
下面以 [ADGEN](https://aclanthology.org/D19-1321.pdf) (广告生成) 数据集为例介绍代码的使用方法。
|
||||
|
||||
## 软件依赖
|
||||
除 ChatGLM-6B 的依赖之外,还需要按照以下依赖
|
||||
```
|
||||
pip install rouge_chinese nltk jieba datasets
|
||||
```
|
||||
## 使用方法
|
||||
|
||||
### 下载数据集
|
||||
ADGEN 数据集任务为根据输入(content)生成一段广告词(summary)。
|
||||
|
||||
```json
|
||||
{
|
||||
"content": "类型#上衣*版型#宽松*版型#显瘦*图案#线条*衣样式#衬衫*衣袖型#泡泡袖*衣款式#抽绳",
|
||||
"summary": "这件衬衫的款式非常的宽松,利落的线条可以很好的隐藏身材上的小缺点,穿在身上有着很好的显瘦效果。领口装饰了一个可爱的抽绳,漂亮的绳结展现出了十足的个性,配合时尚的泡泡袖型,尽显女性甜美可爱的气息。"
|
||||
}
|
||||
```
|
||||
|
||||
从 [Google Drive](https://drive.google.com/file/d/13_vf0xRTQsyneRKdD1bZIr93vBGOczrk/view?usp=sharing) 或者 [Tsinghua Cloud]() 下载处理好的 ADGEN数据集,将解压后的 `AdvertiseGen` 目录放到本目录下。
|
||||
|
||||
### 训练
|
||||
运行以下指令进行训练:
|
||||
```shell
|
||||
bash train.sh
|
||||
```
|
||||
`train.sh` 中的`PRE_SEQ_LEN`和 `LR` 分别是 soft prompt 长度和训练的学习率,可以进行调节以取得最佳的效果。
|
||||
|
||||
### 推理
|
||||
|
||||
将`evaluate.sh`中的`CHECKPOINT`更改为训练时保存的checkpoint名称,运行以下指令进行模型推理和评测:
|
||||
```shell
|
||||
bash evaluate.sh
|
||||
```
|
||||
|
||||
评测指标为中文 Rouge score 和 BLEU-4。生成的结果保存在
|
||||
`./output/adgen-chatglm-6b-pt-8-1e-2/generated_predictions.txt`。
|
||||
|
||||
### 例子
|
||||
#### 示例1
|
||||
* Input: 类型#上衣\*材质#牛仔布\*颜色#白色\*风格#简约\*图案#刺绣\*衣样式#外套\*衣款式#破洞
|
||||
* Label: 简约而不简单的牛仔外套,白色的衣身十分百搭。衣身多处有做旧破洞设计,打破单调乏味,增加一丝造型看点。衣身后背处有趣味刺绣装饰,丰富层次感,彰显别样时尚。
|
||||
* 微调前Output: 这件上衣的材质是牛仔布,颜色是白色,风格是简约,图案是刺绣,衣样式是外套,衣款式是破洞。
|
||||
* 微调后Output: 这是一款简约的牛仔外套,破洞设计,将牛仔布破洞,带来一种随意与个性。破洞的牛仔外套,展现出时尚气息,带来一种休闲感。同时,刺绣图案,让整件外套更加立体。
|
||||
|
||||
#### 示例2
|
||||
|
||||
* Input: 类型#裙\*版型#显瘦\*风格#文艺\*风格#简约\*图案#印花\*图案#撞色\*裙下摆#压褶\*裙长#连衣裙\*裙领型#圆领
|
||||
* Label: 文艺个性的印花连衣裙,藏青色底蕴,低调又大气,撞色太阳花分布整个裙身,绚丽而美好,带来时尚减龄的气质。基础款的舒适圆领,简约不失大方,勾勒精致脸庞。领后是一粒包布扣固定,穿脱十分方便。前片立体的打褶设计,搭配后片压褶的做工,增添层次和空间感,显瘦又有型。
|
||||
|
||||
* 微调前Output: 类型#裙*版型#显瘦*风格#文艺*风格#简约*图案#印花*图案#撞色*裙下摆#压褶*裙长#连衣裙*裙领型#圆领 1\. 连衣裙:简约风格,裙长为膝盖以上,裙领型为圆领。2\. 裙下摆:压褶设计,使裙摆呈现出流畅的褶皱效果。3\. 裙领型:裙领型为圆领,使穿上连衣裙后更加有型。4\. 版型:采用显瘦设计,让连衣裙看起来更加苗条。5\. 风格:文艺风格,让连衣裙更加有内涵和品味。6\. 图案:印花设计,在连衣裙上印有独特的图案。7\. 撞色:采用撞色设计,让连衣裙在色彩上更加鲜明、富有层次感。
|
||||
* 微调后Output: 这是一款文艺范的连衣裙,以印花为元素,采用简约的印花,既能够突出文艺气质,又能够展现简约风。在印花的同时又有领子和裙摆的压褶设计,更加凸显文艺气质。简约而不会过于单调,搭配出街,穿着十分舒适。
|
||||
|
||||
## 使用自己的数据集
|
||||
修改 `train.sh` 和 `evaluate.sh` 中的 `train_file`、`validation_file`和`test_file`为你自己的json格式数据集路径,并将`prompt_column`和`response_column`改为json文件中输入文本和输出文本对应的key。
|
||||
|
||||
## 引用
|
||||
|
||||
```
|
||||
@inproceedings{liu2022p,
|
||||
title={P-tuning: Prompt tuning can be comparable to fine-tuning across scales and tasks},
|
||||
author={Liu, Xiao and Ji, Kaixuan and Fu, Yicheng and Tam, Weng and Du, Zhengxiao and Yang, Zhilin and Tang, Jie},
|
||||
booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)},
|
||||
pages={61--68},
|
||||
year={2022}
|
||||
}
|
||||
```
|
|
@ -0,0 +1,217 @@
|
|||
from dataclasses import dataclass, field
|
||||
from typing import Optional
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelArguments:
|
||||
"""
|
||||
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
||||
"""
|
||||
|
||||
model_name_or_path: str = field(
|
||||
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
||||
)
|
||||
config_name: Optional[str] = field(
|
||||
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
|
||||
)
|
||||
tokenizer_name: Optional[str] = field(
|
||||
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
|
||||
)
|
||||
cache_dir: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
|
||||
)
|
||||
use_fast_tokenizer: bool = field(
|
||||
default=True,
|
||||
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
|
||||
)
|
||||
model_revision: str = field(
|
||||
default="main",
|
||||
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
"help": (
|
||||
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
||||
"with private models)."
|
||||
)
|
||||
},
|
||||
)
|
||||
resize_position_embeddings: Optional[bool] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"Whether to automatically resize the position embeddings if `max_source_length` exceeds "
|
||||
"the model's position embeddings."
|
||||
)
|
||||
},
|
||||
)
|
||||
quantization_bit: Optional[int] = field(
|
||||
default=None
|
||||
)
|
||||
pre_seq_len: Optional[int] = field(
|
||||
default=None
|
||||
)
|
||||
prefix_projection: bool = field(
|
||||
default=False
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class DataTrainingArguments:
|
||||
"""
|
||||
Arguments pertaining to what data we are going to input our model for training and eval.
|
||||
"""
|
||||
|
||||
lang: Optional[str] = field(default=None, metadata={"help": "Language id for summarization."})
|
||||
|
||||
dataset_name: Optional[str] = field(
|
||||
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
|
||||
)
|
||||
dataset_config_name: Optional[str] = field(
|
||||
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
||||
)
|
||||
prompt_column: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
|
||||
)
|
||||
response_column: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "The name of the column in the datasets containing the summaries (for summarization)."},
|
||||
)
|
||||
train_file: Optional[str] = field(
|
||||
default=None, metadata={"help": "The input training data file (a jsonlines or csv file)."}
|
||||
)
|
||||
validation_file: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"An optional input evaluation data file to evaluate the metrics (rouge) on (a jsonlines or csv file)."
|
||||
)
|
||||
},
|
||||
)
|
||||
test_file: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "An optional input test data file to evaluate the metrics (rouge) on (a jsonlines or csv file)."
|
||||
},
|
||||
)
|
||||
overwrite_cache: bool = field(
|
||||
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
|
||||
)
|
||||
preprocessing_num_workers: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={"help": "The number of processes to use for the preprocessing."},
|
||||
)
|
||||
max_source_length: Optional[int] = field(
|
||||
default=1024,
|
||||
metadata={
|
||||
"help": (
|
||||
"The maximum total input sequence length after tokenization. Sequences longer "
|
||||
"than this will be truncated, sequences shorter will be padded."
|
||||
)
|
||||
},
|
||||
)
|
||||
max_target_length: Optional[int] = field(
|
||||
default=128,
|
||||
metadata={
|
||||
"help": (
|
||||
"The maximum total sequence length for target text after tokenization. Sequences longer "
|
||||
"than this will be truncated, sequences shorter will be padded."
|
||||
)
|
||||
},
|
||||
)
|
||||
val_max_target_length: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"The maximum total sequence length for validation target text after tokenization. Sequences longer "
|
||||
"than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`."
|
||||
"This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
|
||||
"during ``evaluate`` and ``predict``."
|
||||
)
|
||||
},
|
||||
)
|
||||
pad_to_max_length: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
"help": (
|
||||
"Whether to pad all samples to model maximum sentence length. "
|
||||
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
|
||||
"efficient on GPU but very bad for TPU."
|
||||
)
|
||||
},
|
||||
)
|
||||
max_train_samples: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"For debugging purposes or quicker training, truncate the number of training examples to this "
|
||||
"value if set."
|
||||
)
|
||||
},
|
||||
)
|
||||
max_eval_samples: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
||||
"value if set."
|
||||
)
|
||||
},
|
||||
)
|
||||
max_predict_samples: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"For debugging purposes or quicker training, truncate the number of prediction examples to this "
|
||||
"value if set."
|
||||
)
|
||||
},
|
||||
)
|
||||
num_beams: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"Number of beams to use for evaluation. This argument will be passed to ``model.generate``, "
|
||||
"which is used during ``evaluate`` and ``predict``."
|
||||
)
|
||||
},
|
||||
)
|
||||
ignore_pad_token_for_loss: bool = field(
|
||||
default=True,
|
||||
metadata={
|
||||
"help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
|
||||
},
|
||||
)
|
||||
source_prefix: Optional[str] = field(
|
||||
default="", metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
|
||||
)
|
||||
|
||||
forced_bos_token: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"The token to force as the first generated token after the decoder_start_token_id."
|
||||
"Useful for multilingual models like mBART where the first generated token"
|
||||
"needs to be the target language token (Usually it is the target language token)"
|
||||
)
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
|
||||
def __post_init__(self):
|
||||
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
|
||||
raise ValueError("Need either a dataset name or a training/validation file.")
|
||||
else:
|
||||
if self.train_file is not None:
|
||||
extension = self.train_file.split(".")[-1]
|
||||
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
|
||||
if self.validation_file is not None:
|
||||
extension = self.validation_file.split(".")[-1]
|
||||
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
|
||||
if self.val_max_target_length is None:
|
||||
self.val_max_target_length = self.max_target_length
|
||||
|
|
@ -0,0 +1,20 @@
|
|||
PRE_SEQ_LEN=8
|
||||
CHECKPOINT=adgen-chatglm-6b-pt-8-1e-2
|
||||
STEP=3000
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0 python3 main.py \
|
||||
--do_predict \
|
||||
--test_file AdvertiseGen/dev.json \
|
||||
--overwrite_cache \
|
||||
--prompt_column content \
|
||||
--response_column summary \
|
||||
--model_name_or_path ./output/$CHECKPOINT/checkpoint-$STEP \
|
||||
--output_dir ./output/$CHECKPOINT \
|
||||
--overwrite_output_dir \
|
||||
--max_source_length 64 \
|
||||
--max_target_length 64 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--predict_with_generate \
|
||||
--max_predict_samples 10 \
|
||||
--pre_seq_len $PRE_SEQ_LEN \
|
||||
--quantization_bit 4
|
|
@ -0,0 +1,389 @@
|
|||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Fine-tuning the library models for sequence to sequence.
|
||||
"""
|
||||
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.
|
||||
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import json
|
||||
|
||||
import numpy as np
|
||||
from datasets import load_dataset
|
||||
import jieba
|
||||
from rouge_chinese import Rouge
|
||||
from nltk.translate.bleu_score import sentence_bleu
|
||||
|
||||
import transformers
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
AutoModel,
|
||||
AutoTokenizer,
|
||||
AutoTokenizer,
|
||||
DataCollatorForSeq2Seq,
|
||||
HfArgumentParser,
|
||||
Seq2SeqTrainingArguments,
|
||||
set_seed,
|
||||
)
|
||||
from trainer_seq2seq import Seq2SeqTrainer
|
||||
|
||||
from arguments import ModelArguments, DataTrainingArguments
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
def main():
|
||||
|
||||
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
|
||||
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
||||
# If we pass only one argument to the script and it's the path to a json file,
|
||||
# let's parse it to get our arguments.
|
||||
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
# Setup logging
|
||||
logging.basicConfig(
|
||||
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
||||
datefmt="%m/%d/%Y %H:%M:%S",
|
||||
handlers=[logging.StreamHandler(sys.stdout)],
|
||||
)
|
||||
|
||||
if training_args.should_log:
|
||||
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
|
||||
transformers.utils.logging.set_verbosity_info()
|
||||
|
||||
log_level = training_args.get_process_log_level()
|
||||
logger.setLevel(log_level)
|
||||
# datasets.utils.logging.set_verbosity(log_level)
|
||||
transformers.utils.logging.set_verbosity(log_level)
|
||||
transformers.utils.logging.enable_default_handler()
|
||||
transformers.utils.logging.enable_explicit_format()
|
||||
|
||||
# Log on each process the small summary:
|
||||
logger.warning(
|
||||
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
||||
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
||||
)
|
||||
logger.info(f"Training/evaluation parameters {training_args}")
|
||||
|
||||
# Set seed before initializing model.
|
||||
set_seed(training_args.seed)
|
||||
|
||||
# Load dataset
|
||||
data_files = {}
|
||||
if data_args.train_file is not None:
|
||||
data_files["train"] = data_args.train_file
|
||||
extension = data_args.train_file.split(".")[-1]
|
||||
if data_args.validation_file is not None:
|
||||
data_files["validation"] = data_args.validation_file
|
||||
extension = data_args.validation_file.split(".")[-1]
|
||||
if data_args.test_file is not None:
|
||||
data_files["test"] = data_args.test_file
|
||||
extension = data_args.test_file.split(".")[-1]
|
||||
|
||||
raw_datasets = load_dataset(
|
||||
extension,
|
||||
data_files=data_files,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
)
|
||||
|
||||
# Load pretrained model and tokenizer
|
||||
config = AutoConfig.from_pretrained(model_args.model_name_or_path, trust_remote_code=True)
|
||||
config.pre_seq_len = model_args.pre_seq_len
|
||||
config.prefix_projection = model_args.prefix_projection
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, trust_remote_code=True)
|
||||
|
||||
model = AutoModel.from_pretrained(model_args.model_name_or_path, config=config, revision=True, trust_remote_code=True)
|
||||
|
||||
model = model.half()
|
||||
if model_args.quantization_bit is not None:
|
||||
print(f"Quantized to {model_args.quantization_bit} bit")
|
||||
model = model.quantize(model_args.quantization_bit)
|
||||
model.transformer.prefix_encoder.float()
|
||||
|
||||
prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
|
||||
|
||||
# Preprocessing the datasets.
|
||||
# We need to tokenize inputs and targets.
|
||||
if training_args.do_train:
|
||||
column_names = raw_datasets["train"].column_names
|
||||
elif training_args.do_eval:
|
||||
column_names = raw_datasets["validation"].column_names
|
||||
elif training_args.do_predict:
|
||||
column_names = raw_datasets["test"].column_names
|
||||
else:
|
||||
logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
|
||||
return
|
||||
|
||||
# Get the column names for input/target.
|
||||
prompt_column = data_args.prompt_column
|
||||
response_column = data_args.response_column
|
||||
|
||||
# Temporarily set max_target_length for training.
|
||||
max_target_length = data_args.max_target_length
|
||||
|
||||
def preprocess_function_eval(examples):
|
||||
inputs, targets = [], []
|
||||
for i in range(len(examples[prompt_column])):
|
||||
if examples[prompt_column][i] and examples[response_column][i]:
|
||||
inputs.append(examples[prompt_column][i])
|
||||
targets.append(examples[response_column][i])
|
||||
|
||||
inputs = [prefix + inp for inp in inputs]
|
||||
model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, truncation=True)
|
||||
labels = tokenizer(text_target=targets, max_length=max_target_length, truncation=True)
|
||||
|
||||
if data_args.ignore_pad_token_for_loss:
|
||||
labels["input_ids"] = [
|
||||
[(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
|
||||
]
|
||||
model_inputs["labels"] = labels["input_ids"]
|
||||
|
||||
return model_inputs
|
||||
|
||||
def preprocess_function_train(examples):
|
||||
max_seq_length = data_args.max_source_length + data_args.max_target_length
|
||||
|
||||
model_inputs = {
|
||||
"input_ids": [],
|
||||
"labels": [],
|
||||
}
|
||||
for i in range(len(examples[prompt_column])):
|
||||
if examples[prompt_column][i] and examples[response_column][i]:
|
||||
prompt, answer = examples[prompt_column][i], examples[response_column][i]
|
||||
prompt = prefix + prompt
|
||||
a_ids = tokenizer.encode(text=prompt, add_special_tokens=False)
|
||||
b_ids = tokenizer.encode(text=answer, add_special_tokens=False)
|
||||
|
||||
if len(a_ids) > data_args.max_source_length - 1:
|
||||
a_ids = a_ids[: data_args.max_source_length - 1]
|
||||
|
||||
if len(b_ids) > data_args.max_target_length - 2:
|
||||
b_ids = b_ids[: data_args.max_target_length - 2]
|
||||
|
||||
input_ids = a_ids + [150001, 150004] + b_ids + [150005]
|
||||
|
||||
context_length = input_ids.index(150004)
|
||||
mask_position = context_length - 1
|
||||
labels = [-100] * context_length + input_ids[mask_position+1:]
|
||||
|
||||
pad_len = max_seq_length - len(input_ids)
|
||||
input_ids = input_ids + [tokenizer.pad_token_id] * pad_len
|
||||
labels = labels + [tokenizer.pad_token_id] * pad_len
|
||||
|
||||
model_inputs["input_ids"].append(input_ids)
|
||||
model_inputs["labels"].append(labels)
|
||||
|
||||
return model_inputs
|
||||
|
||||
def print_dataset_example(example):
|
||||
print("input_ids",example["input_ids"])
|
||||
print("inputs", tokenizer.decode(example["input_ids"]))
|
||||
print("label_ids", example["labels"])
|
||||
print("labels", tokenizer.decode(example["labels"]))
|
||||
|
||||
if training_args.do_train:
|
||||
if "train" not in raw_datasets:
|
||||
raise ValueError("--do_train requires a train dataset")
|
||||
train_dataset = raw_datasets["train"]
|
||||
if data_args.max_train_samples is not None:
|
||||
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
|
||||
train_dataset = train_dataset.select(range(max_train_samples))
|
||||
with training_args.main_process_first(desc="train dataset map pre-processing"):
|
||||
train_dataset = train_dataset.map(
|
||||
preprocess_function_train,
|
||||
batched=True,
|
||||
num_proc=data_args.preprocessing_num_workers,
|
||||
remove_columns=column_names,
|
||||
load_from_cache_file=not data_args.overwrite_cache,
|
||||
desc="Running tokenizer on train dataset",
|
||||
)
|
||||
print_dataset_example(train_dataset[0])
|
||||
|
||||
if training_args.do_eval:
|
||||
max_target_length = data_args.val_max_target_length
|
||||
if "validation" not in raw_datasets:
|
||||
raise ValueError("--do_eval requires a validation dataset")
|
||||
eval_dataset = raw_datasets["validation"]
|
||||
if data_args.max_eval_samples is not None:
|
||||
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
|
||||
eval_dataset = eval_dataset.select(range(max_eval_samples))
|
||||
with training_args.main_process_first(desc="validation dataset map pre-processing"):
|
||||
eval_dataset = eval_dataset.map(
|
||||
preprocess_function_eval,
|
||||
batched=True,
|
||||
num_proc=data_args.preprocessing_num_workers,
|
||||
remove_columns=column_names,
|
||||
load_from_cache_file=not data_args.overwrite_cache,
|
||||
desc="Running tokenizer on validation dataset",
|
||||
)
|
||||
print_dataset_example(eval_dataset[0])
|
||||
|
||||
if training_args.do_predict:
|
||||
max_target_length = data_args.val_max_target_length
|
||||
if "test" not in raw_datasets:
|
||||
raise ValueError("--do_predict requires a test dataset")
|
||||
predict_dataset = raw_datasets["test"]
|
||||
if data_args.max_predict_samples is not None:
|
||||
max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
|
||||
predict_dataset = predict_dataset.select(range(max_predict_samples))
|
||||
with training_args.main_process_first(desc="prediction dataset map pre-processing"):
|
||||
predict_dataset = predict_dataset.map(
|
||||
preprocess_function_eval,
|
||||
batched=True,
|
||||
num_proc=data_args.preprocessing_num_workers,
|
||||
remove_columns=column_names,
|
||||
load_from_cache_file=not data_args.overwrite_cache,
|
||||
desc="Running tokenizer on prediction dataset",
|
||||
)
|
||||
print_dataset_example(predict_dataset[0])
|
||||
|
||||
# Data collator
|
||||
label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
|
||||
data_collator = DataCollatorForSeq2Seq(
|
||||
tokenizer,
|
||||
model=model,
|
||||
label_pad_token_id=label_pad_token_id,
|
||||
pad_to_multiple_of=None,
|
||||
)
|
||||
|
||||
# Metric
|
||||
def compute_metrics(eval_preds):
|
||||
preds, labels = eval_preds
|
||||
if isinstance(preds, tuple):
|
||||
preds = preds[0]
|
||||
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
|
||||
if data_args.ignore_pad_token_for_loss:
|
||||
# Replace -100 in the labels as we can't decode them.
|
||||
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
||||
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
|
||||
|
||||
score_dict = {
|
||||
"rouge-1": [],
|
||||
"rouge-2": [],
|
||||
"rouge-l": [],
|
||||
"bleu-4": []
|
||||
}
|
||||
for pred, label in zip(decoded_preds, decoded_labels):
|
||||
hypothesis = list(jieba.cut(pred))
|
||||
reference = list(jieba.cut(label))
|
||||
rouge = Rouge()
|
||||
scores = rouge.get_scores(' '.join(hypothesis) , ' '.join(reference))
|
||||
result = scores[0]
|
||||
|
||||
for k, v in result.items():
|
||||
score_dict[k].append(round(v["f"] * 100, 4))
|
||||
bleu_score = sentence_bleu([list(label)], list(pred))
|
||||
score_dict["bleu-4"].append(round(bleu_score * 100, 4))
|
||||
|
||||
for k, v in score_dict.items():
|
||||
score_dict[k] = float(np.mean(v))
|
||||
return score_dict
|
||||
|
||||
# Override the decoding parameters of Seq2SeqTrainer
|
||||
training_args.generation_max_length = (
|
||||
training_args.generation_max_length
|
||||
if training_args.generation_max_length is not None
|
||||
else data_args.val_max_target_length
|
||||
)
|
||||
training_args.generation_num_beams = (
|
||||
data_args.num_beams if data_args.num_beams is not None else training_args.generation_num_beams
|
||||
)
|
||||
# Initialize our Trainer
|
||||
trainer = Seq2SeqTrainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
train_dataset=train_dataset if training_args.do_train else None,
|
||||
eval_dataset=eval_dataset if training_args.do_eval else None,
|
||||
tokenizer=tokenizer,
|
||||
data_collator=data_collator,
|
||||
compute_metrics=compute_metrics if training_args.predict_with_generate else None,
|
||||
)
|
||||
|
||||
# Training
|
||||
if training_args.do_train:
|
||||
checkpoint = None
|
||||
if training_args.resume_from_checkpoint is not None:
|
||||
checkpoint = training_args.resume_from_checkpoint
|
||||
# elif last_checkpoint is not None:
|
||||
# checkpoint = last_checkpoint
|
||||
model.gradient_checkpointing_enable()
|
||||
model.enable_input_require_grads()
|
||||
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
||||
# trainer.save_model() # Saves the tokenizer too for easy upload
|
||||
|
||||
metrics = train_result.metrics
|
||||
max_train_samples = (
|
||||
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
|
||||
)
|
||||
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
|
||||
|
||||
trainer.log_metrics("train", metrics)
|
||||
trainer.save_metrics("train", metrics)
|
||||
trainer.save_state()
|
||||
|
||||
# Evaluation
|
||||
results = {}
|
||||
if training_args.do_eval:
|
||||
logger.info("*** Evaluate ***")
|
||||
metrics = trainer.evaluate(metric_key_prefix="eval", do_sample=True, top_p=0.7, max_length=512, temperature=0.95)
|
||||
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
|
||||
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
|
||||
|
||||
trainer.log_metrics("eval", metrics)
|
||||
trainer.save_metrics("eval", metrics)
|
||||
|
||||
if training_args.do_predict:
|
||||
logger.info("*** Predict ***")
|
||||
|
||||
predict_results = trainer.predict(predict_dataset, metric_key_prefix="predict", max_length=512, do_sample=True, top_p=0.7, temperature=0.95)
|
||||
metrics = predict_results.metrics
|
||||
max_predict_samples = (
|
||||
data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
|
||||
)
|
||||
metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))
|
||||
|
||||
trainer.log_metrics("predict", metrics)
|
||||
trainer.save_metrics("predict", metrics)
|
||||
|
||||
if trainer.is_world_process_zero():
|
||||
if training_args.predict_with_generate:
|
||||
predictions = tokenizer.batch_decode(
|
||||
predict_results.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True
|
||||
)
|
||||
predictions = [pred.strip() for pred in predictions]
|
||||
labels = tokenizer.batch_decode(
|
||||
predict_results.label_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
|
||||
)
|
||||
labels = [label.strip() for label in labels]
|
||||
output_prediction_file = os.path.join(training_args.output_dir, "generated_predictions.txt")
|
||||
with open(output_prediction_file, "w") as writer:
|
||||
for p, l in zip(predictions, labels):
|
||||
writer.write(json.dumps({"labels": l, "predict": p}, ensure_ascii=False))
|
||||
return results
|
||||
|
||||
|
||||
def _mp_fn(index):
|
||||
# For xla_spawn (TPUs)
|
||||
main()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -0,0 +1,26 @@
|
|||
PRE_SEQ_LEN=8
|
||||
LR=1e-2
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0 python3 main.py \
|
||||
--do_train \
|
||||
--train_file AdvertiseGen/train.json \
|
||||
--validation_file AdvertiseGen/dev.json \
|
||||
--prompt_column content \
|
||||
--response_column summary \
|
||||
--overwrite_cache \
|
||||
--model_name_or_path /mnt/vepfs/workspace/zxdu/chatglm_6b \
|
||||
--output_dir output/adgen-chatglm-6b-pt-$PRE_SEQ_LEN-$LR-dev \
|
||||
--overwrite_output_dir \
|
||||
--max_source_length 64 \
|
||||
--max_target_length 64 \
|
||||
--per_device_train_batch_size 8 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--gradient_accumulation_steps 2 \
|
||||
--predict_with_generate \
|
||||
--max_steps 3000 \
|
||||
--logging_steps 10 \
|
||||
--save_steps 1000 \
|
||||
--learning_rate $LR \
|
||||
--pre_seq_len $PRE_SEQ_LEN \
|
||||
--quantization_bit 4
|
||||
|
|
@ -0,0 +1,245 @@
|
|||
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.utils.data import Dataset
|
||||
|
||||
from transformers.deepspeed import is_deepspeed_zero3_enabled
|
||||
from transformers.trainer import Trainer
|
||||
from transformers.trainer_utils import PredictionOutput
|
||||
from transformers.utils import logging
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
class Seq2SeqTrainer(Trainer):
|
||||
def evaluate(
|
||||
self,
|
||||
eval_dataset: Optional[Dataset] = None,
|
||||
ignore_keys: Optional[List[str]] = None,
|
||||
metric_key_prefix: str = "eval",
|
||||
**gen_kwargs
|
||||
) -> Dict[str, float]:
|
||||
"""
|
||||
Run evaluation and returns metrics.
|
||||
|
||||
The calling script will be responsible for providing a method to compute metrics, as they are task-dependent
|
||||
(pass it to the init `compute_metrics` argument).
|
||||
|
||||
You can also subclass and override this method to inject custom behavior.
|
||||
|
||||
Args:
|
||||
eval_dataset (`Dataset`, *optional*):
|
||||
Pass a dataset if you wish to override `self.eval_dataset`. If it is an [`~datasets.Dataset`], columns
|
||||
not accepted by the `model.forward()` method are automatically removed. It must implement the `__len__`
|
||||
method.
|
||||
ignore_keys (`List[str]`, *optional*):
|
||||
A list of keys in the output of your model (if it is a dictionary) that should be ignored when
|
||||
gathering predictions.
|
||||
metric_key_prefix (`str`, *optional*, defaults to `"eval"`):
|
||||
An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named
|
||||
"eval_bleu" if the prefix is `"eval"` (default)
|
||||
max_length (`int`, *optional*):
|
||||
The maximum target length to use when predicting with the generate method.
|
||||
num_beams (`int`, *optional*):
|
||||
Number of beams for beam search that will be used when predicting with the generate method. 1 means no
|
||||
beam search.
|
||||
gen_kwargs:
|
||||
Additional `generate` specific kwargs.
|
||||
|
||||
Returns:
|
||||
A dictionary containing the evaluation loss and the potential metrics computed from the predictions. The
|
||||
dictionary also contains the epoch number which comes from the training state.
|
||||
"""
|
||||
|
||||
gen_kwargs = gen_kwargs.copy()
|
||||
if gen_kwargs.get("max_length") is None and gen_kwargs.get("max_new_tokens") is None:
|
||||
gen_kwargs["max_length"] = self.args.generation_max_length
|
||||
gen_kwargs["num_beams"] = (
|
||||
gen_kwargs["num_beams"] if gen_kwargs.get("num_beams") is not None else self.args.generation_num_beams
|
||||
)
|
||||
self._gen_kwargs = gen_kwargs
|
||||
|
||||
return super().evaluate(eval_dataset, ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix)
|
||||
|
||||
def predict(
|
||||
self,
|
||||
test_dataset: Dataset,
|
||||
ignore_keys: Optional[List[str]] = None,
|
||||
metric_key_prefix: str = "test",
|
||||
**gen_kwargs
|
||||
) -> PredictionOutput:
|
||||
"""
|
||||
Run prediction and returns predictions and potential metrics.
|
||||
|
||||
Depending on the dataset and your use case, your test dataset may contain labels. In that case, this method
|
||||
will also return metrics, like in `evaluate()`.
|
||||
|
||||
Args:
|
||||
test_dataset (`Dataset`):
|
||||
Dataset to run the predictions on. If it is a [`~datasets.Dataset`], columns not accepted by the
|
||||
`model.forward()` method are automatically removed. Has to implement the method `__len__`
|
||||
ignore_keys (`List[str]`, *optional*):
|
||||
A list of keys in the output of your model (if it is a dictionary) that should be ignored when
|
||||
gathering predictions.
|
||||
metric_key_prefix (`str`, *optional*, defaults to `"eval"`):
|
||||
An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named
|
||||
"eval_bleu" if the prefix is `"eval"` (default)
|
||||
max_length (`int`, *optional*):
|
||||
The maximum target length to use when predicting with the generate method.
|
||||
num_beams (`int`, *optional*):
|
||||
Number of beams for beam search that will be used when predicting with the generate method. 1 means no
|
||||
beam search.
|
||||
gen_kwargs:
|
||||
Additional `generate` specific kwargs.
|
||||
|
||||
<Tip>
|
||||
|
||||
If your predictions or labels have different sequence lengths (for instance because you're doing dynamic
|
||||
padding in a token classification task) the predictions will be padded (on the right) to allow for
|
||||
concatenation into one array. The padding index is -100.
|
||||
|
||||
</Tip>
|
||||
|
||||
Returns: *NamedTuple* A namedtuple with the following keys:
|
||||
|
||||
- predictions (`np.ndarray`): The predictions on `test_dataset`.
|
||||
- label_ids (`np.ndarray`, *optional*): The labels (if the dataset contained some).
|
||||
- metrics (`Dict[str, float]`, *optional*): The potential dictionary of metrics (if the dataset contained
|
||||
labels).
|
||||
"""
|
||||
|
||||
gen_kwargs = gen_kwargs.copy()
|
||||
if gen_kwargs.get("max_length") is None and gen_kwargs.get("max_new_tokens") is None:
|
||||
gen_kwargs["max_length"] = self.args.generation_max_length
|
||||
gen_kwargs["num_beams"] = (
|
||||
gen_kwargs["num_beams"] if gen_kwargs.get("num_beams") is not None else self.args.generation_num_beams
|
||||
)
|
||||
self._gen_kwargs = gen_kwargs
|
||||
|
||||
|
||||
return super().predict(test_dataset, ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix)
|
||||
|
||||
def prediction_step(
|
||||
self,
|
||||
model: nn.Module,
|
||||
inputs: Dict[str, Union[torch.Tensor, Any]],
|
||||
prediction_loss_only: bool,
|
||||
ignore_keys: Optional[List[str]] = None,
|
||||
) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
|
||||
"""
|
||||
Perform an evaluation step on `model` using `inputs`.
|
||||
|
||||
Subclass and override to inject custom behavior.
|
||||
|
||||
Args:
|
||||
model (`nn.Module`):
|
||||
The model to evaluate.
|
||||
inputs (`Dict[str, Union[torch.Tensor, Any]]`):
|
||||
The inputs and targets of the model.
|
||||
|
||||
The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
|
||||
argument `labels`. Check your model's documentation for all accepted arguments.
|
||||
prediction_loss_only (`bool`):
|
||||
Whether or not to return the loss only.
|
||||
|
||||
Return:
|
||||
Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: A tuple with the loss, logits and
|
||||
labels (each being optional).
|
||||
"""
|
||||
|
||||
if not self.args.predict_with_generate or prediction_loss_only:
|
||||
return super().prediction_step(
|
||||
model, inputs, prediction_loss_only=prediction_loss_only, ignore_keys=ignore_keys
|
||||
)
|
||||
|
||||
has_labels = "labels" in inputs
|
||||
inputs = self._prepare_inputs(inputs)
|
||||
|
||||
# XXX: adapt synced_gpus for fairscale as well
|
||||
gen_kwargs = self._gen_kwargs.copy()
|
||||
if gen_kwargs.get("max_length") is None and gen_kwargs.get("max_new_tokens") is None:
|
||||
gen_kwargs["max_length"] = self.model.config.max_length
|
||||
gen_kwargs["num_beams"] = (
|
||||
gen_kwargs["num_beams"] if gen_kwargs.get("num_beams") is not None else self.model.config.num_beams
|
||||
)
|
||||
default_synced_gpus = True if is_deepspeed_zero3_enabled() else False
|
||||
gen_kwargs["synced_gpus"] = (
|
||||
gen_kwargs["synced_gpus"] if gen_kwargs.get("synced_gpus") is not None else default_synced_gpus
|
||||
)
|
||||
|
||||
if "attention_mask" in inputs:
|
||||
gen_kwargs["attention_mask"] = inputs.get("attention_mask", None)
|
||||
if "global_attention_mask" in inputs:
|
||||
gen_kwargs["global_attention_mask"] = inputs.get("global_attention_mask", None)
|
||||
|
||||
# prepare generation inputs
|
||||
# some encoder-decoder models can have varying encoder's and thus
|
||||
# varying model input names
|
||||
if hasattr(self.model, "encoder") and self.model.encoder.main_input_name != self.model.main_input_name:
|
||||
generation_inputs = inputs[self.model.encoder.main_input_name]
|
||||
else:
|
||||
generation_inputs = inputs[self.model.main_input_name]
|
||||
|
||||
gen_kwargs["input_ids"] = generation_inputs
|
||||
generated_tokens = self.model.generate(**gen_kwargs)
|
||||
generated_tokens = generated_tokens[:, generation_inputs.size()[-1]:]
|
||||
|
||||
# in case the batch is shorter than max length, the output should be padded
|
||||
if gen_kwargs.get("max_length") is not None and generated_tokens.shape[-1] < gen_kwargs["max_length"]:
|
||||
generated_tokens = self._pad_tensors_to_max_len(generated_tokens, gen_kwargs["max_length"])
|
||||
elif gen_kwargs.get("max_new_tokens") is not None and generated_tokens.shape[-1] < (
|
||||
gen_kwargs["max_new_tokens"] + 1
|
||||
):
|
||||
generated_tokens = self._pad_tensors_to_max_len(generated_tokens, gen_kwargs["max_new_tokens"] + 1)
|
||||
|
||||
loss = None
|
||||
|
||||
if self.args.prediction_loss_only:
|
||||
return (loss, None, None)
|
||||
|
||||
if has_labels:
|
||||
labels = inputs["labels"]
|
||||
if gen_kwargs.get("max_length") is not None and labels.shape[-1] < gen_kwargs["max_length"]:
|
||||
labels = self._pad_tensors_to_max_len(labels, gen_kwargs["max_length"])
|
||||
elif gen_kwargs.get("max_new_tokens") is not None and labels.shape[-1] < (
|
||||
gen_kwargs["max_new_tokens"] + 1
|
||||
):
|
||||
labels = self._pad_tensors_to_max_len(labels, (gen_kwargs["max_new_tokens"] + 1))
|
||||
else:
|
||||
labels = None
|
||||
|
||||
return (loss, generated_tokens, labels)
|
||||
|
||||
def _pad_tensors_to_max_len(self, tensor, max_length):
|
||||
if self.tokenizer is not None and hasattr(self.tokenizer, "pad_token_id"):
|
||||
# If PAD token is not defined at least EOS token has to be defined
|
||||
pad_token_id = (
|
||||
self.tokenizer.pad_token_id if self.tokenizer.pad_token_id is not None else self.tokenizer.eos_token_id
|
||||
)
|
||||
else:
|
||||
if self.model.config.pad_token_id is not None:
|
||||
pad_token_id = self.model.config.pad_token_id
|
||||
else:
|
||||
raise ValueError("Pad_token_id must be set in the configuration of the model, in order to pad tensors")
|
||||
|
||||
padded_tensor = pad_token_id * torch.ones(
|
||||
(tensor.shape[0], max_length), dtype=tensor.dtype, device=tensor.device
|
||||
)
|
||||
padded_tensor[:, : tensor.shape[-1]] = tensor
|
||||
return padded_tensor
|
Loading…
Reference in New Issue