diff --git a/utils.py b/utils.py index 0c0d757..54ab543 100644 --- a/utils.py +++ b/utils.py @@ -1,18 +1,64 @@ import os -from typing import Dict, Tuple, Union, Optional +from typing import Dict, Tuple, Union, Optional, List +import torch from torch.nn import Module from transformers import AutoModel, AutoTokenizer from transformers.tokenization_utils import PreTrainedTokenizer -def auto_configure_device_map(num_gpus: int) -> Dict[str, int]: +def calculate_per_gpu_layers(gpu_list: List[int], total_layers) -> Dict[int, int]: + # 根据每个GPU的显存大小,计算每个GPU应分配的层数 + # 获取每个gpu的显存大小 + gpu_memory_map = { + gpu: torch.cuda.get_device_properties(gpu).total_memory + for gpu in gpu_list + } + + # 计算总显存大小 + total_memory = sum(gpu_memory_map.values()) + + # 计算每个GPU的显存比例 + gpu_memory_ratios = { + gpu: memory / total_memory + for gpu, memory in gpu_memory_map.items() + } + + # 计算每个 GPU 应分配的层数 + per_gpu_layers = { + gpu: int(round(total_layers * ratio)) + for gpu, ratio in gpu_memory_ratios.items() + } + + # 修正分配误差,确保总层数为total_layers + while True: + diff = total_layers - sum(per_gpu_layers.values()) + if diff > 0: + gpu_with_max_memory = max(gpu_memory_ratios, key=gpu_memory_ratios.get) + per_gpu_layers[gpu_with_max_memory] += diff + elif diff < 0: + gpu_with_min_memory = min(gpu_memory_ratios, key=gpu_memory_ratios.get) + per_gpu_layers[gpu_with_min_memory] -= -diff + else: + break + + return per_gpu_layers + + +def auto_configure_device_map(num_gpus: int, gpu_list: Optional[List[int]] = None) -> Dict[str, int]: # transformer.word_embeddings 占用1层 # transformer.final_layernorm 和 lm_head 占用1层 # transformer.layers 占用 28 层 # 总共30层分配到num_gpus张卡上 num_trans_layers = 28 - per_gpu_layers = 30 / num_gpus + + if gpu_list is None: + gpu_list = list(range(num_gpus)) + assert len(gpu_list) <= torch.cuda.device_count(), "分配的GPU数量超过了实际可用的GPU数量" + + current_gpu_index = 0 + # 获取每个gpu的承载的层数 + per_gpu_layer_dict = calculate_per_gpu_layers(gpu_list, total_layers=num_trans_layers + 2) # bugfix: 在linux中调用torch.embedding传入的weight,input不在同一device上,导致RuntimeError # windows下 model.device 会被设置成 transformer.word_embeddings.device @@ -20,18 +66,23 @@ def auto_configure_device_map(num_gpus: int) -> Dict[str, int]: # 在调用chat或者stream_chat时,input_ids会被放到model.device上 # 如果transformer.word_embeddings.device和model.device不同,则会导致RuntimeError # 因此这里将transformer.word_embeddings,transformer.final_layernorm,lm_head都放到第一张卡上 - device_map = {'transformer.word_embeddings': 0, - 'transformer.final_layernorm': 0, 'lm_head': 0} + device_map = {'transformer.word_embeddings': gpu_list[current_gpu_index], + 'transformer.final_layernorm': gpu_list[current_gpu_index], 'lm_head': gpu_list[current_gpu_index]} used = 2 - gpu_target = 0 + + # 分配剩余的层数 + current_gpu = gpu_list[current_gpu_index] for i in range(num_trans_layers): - if used >= per_gpu_layers: - gpu_target += 1 - used = 0 - assert gpu_target < num_gpus - device_map[f'transformer.layers.{i}'] = gpu_target - used += 1 + if used < per_gpu_layer_dict[current_gpu]: + device_map[f"transformer.layers.{i}"] = current_gpu + used += 1 + else: + # 当前 GPU 的层数已分配完,切换到下一个 GPU + current_gpu_index += 1 + current_gpu = gpu_list[current_gpu_index] + device_map[f"transformer.layers.{i}"] = gpu_list[current_gpu] + used = 1 return device_map