多GPU支持, 模型文件夹没有index.json会自动保存模型到multi_gpu_model_cache_dir以支持多GPU

pull/241/head
saber 2 years ago
parent 4ee042a8e6
commit 8826b947c3

@ -1,6 +1,10 @@
import datetime
import json
import uvicorn
from fastapi import FastAPI, Request
from transformers import AutoTokenizer, AutoModel
import uvicorn, json, datetime
from utils import load_mode_and_tokenizer
app = FastAPI()
@ -30,6 +34,4 @@ async def create_item(request: Request):
if __name__ == '__main__':
uvicorn.run('api:app', host='0.0.0.0', port=8000, workers=1)
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
model.eval()
model, tokenizer = load_mode_and_tokenizer("THUDM/chatglm-6b", num_gpus=1)

@ -1,44 +0,0 @@
'''
Author: lichuang
Date: 2023-03-23 09:18:13
Description: 将模型加载到多张GPU卡中根据gpu的数量自动分配平均的显存占用
'''
from typing import Dict
from accelerate import load_checkpoint_and_dispatch
from transformers import AutoModel
def auto_configure_device_map(num_gpus) -> Dict[str, int]:
# transformer.word_embeddings 占用1层
# transformer.final_layernorm 和 lm_head 占用1层
# transformer.layers 占用 28 层
# 总共30层分配到num_gpus张卡上
num_trans_layers = 28
per_gpu_layers = 30 / num_gpus
device_map = {'transformer.word_embeddings': 0,
'transformer.final_layernorm': num_gpus - 1, 'lm_head': num_gpus - 1}
used = 1
gpu_target = 0
for i in range(num_trans_layers):
if used >= per_gpu_layers:
gpu_target += 1
used = 0
assert gpu_target < num_gpus
device_map[f'transformer.layers.{i}'] = gpu_target
used += 1
return device_map
def load_model_on_gpus(checkpoint_path, num_gpus=2):
device_map = auto_configure_device_map(num_gpus)
model = AutoModel.from_pretrained(
checkpoint_path, trust_remote_code=True)
model = model.eval()
model = load_checkpoint_and_dispatch(
model, checkpoint_path, device_map=device_map, offload_folder="offload", offload_state_dict=True).half()
return model

@ -1,10 +1,9 @@
import os
import platform
from transformers import AutoTokenizer, AutoModel
from chatglm_parallel import load_model_on_gpus
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
model = load_model_on_gpus("THUDM/chatglm-6b", num_gpus=2)
from utils import load_mode_and_tokenizer
model, tokenizer = load_mode_and_tokenizer("THUDM/chatglm-6b", num_gpus=1)
os_name = platform.system()
clear_command = 'cls' if os_name == 'Windows' else 'clear'

@ -0,0 +1,66 @@
import os
from typing import Dict, Tuple, Union
from accelerate import load_checkpoint_and_dispatch
from transformers import AutoModel, AutoTokenizer
def auto_configure_device_map(num_gpus: int) -> Dict[str, int]:
# transformer.word_embeddings 占用1层
# transformer.final_layernorm 和 lm_head 占用1层
# transformer.layers 占用 28 层
# 总共30层分配到num_gpus张卡上
num_trans_layers = 28
per_gpu_layers = 30 / num_gpus
device_map = {'transformer.word_embeddings': 0,
'transformer.final_layernorm': num_gpus - 1, 'lm_head': num_gpus - 1}
used = 1
gpu_target = 0
for i in range(num_trans_layers):
if used >= per_gpu_layers:
gpu_target += 1
used = 0
assert gpu_target < num_gpus
device_map[f'transformer.layers.{i}'] = gpu_target
used += 1
return device_map
def load_model_on_gpus(checkpoint_path: Union[str, os.PathLike],
multi_gpu_model_cache_dir: Union[str, os.PathLike] = "./temp_model_dir",
num_gpus: int = 2, **kwargs):
model = AutoModel.from_pretrained(checkpoint_path, trust_remote_code=True, **kwargs)
model = model.eval()
device_map = auto_configure_device_map(num_gpus)
try:
model = load_checkpoint_and_dispatch(
model, checkpoint_path, device_map=device_map, offload_folder="offload", offload_state_dict=True).half()
except ValueError:
# index.json not found
print(f"index.json not found, auto fixing and saving model to {multi_gpu_model_cache_dir} ...")
assert multi_gpu_model_cache_dir is not None, "using auto fix, cache_dir must not be None"
model.save_pretrained(multi_gpu_model_cache_dir, max_shard_size='2GB')
model = load_checkpoint_and_dispatch(
model, multi_gpu_model_cache_dir, device_map=device_map,
offload_folder="offload", offload_state_dict=True).half()
print(f"loading model successfully, you should use checkpoint_path={multi_gpu_model_cache_dir} next time")
return model
def load_mode_and_tokenizer(checkpoint_path: Union[str, os.PathLike],
multi_gpu_model_cache_dir: Union[str, os.PathLike] = "./temp_model_dir",
num_gpus: int = 1, **kwargs) -> Tuple[AutoModel, AutoTokenizer]:
tokenizer = AutoTokenizer.from_pretrained(checkpoint_path, trust_remote_code=True, **kwargs)
if num_gpus < 2:
model = AutoModel.from_pretrained(checkpoint_path, trust_remote_code=True, **kwargs).half().cuda()
model = model.eval()
else:
model = load_model_on_gpus(checkpoint_path, multi_gpu_model_cache_dir, num_gpus, **kwargs)
return model, tokenizer

@ -1,9 +1,7 @@
from transformers import AutoTokenizer
import gradio as gr
from chatglm_parallel import load_model_on_gpus
from utils import load_mode_and_tokenizer
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
model = load_model_on_gpus("THUDM/chatglm-6b", num_gpus=2)
model, tokenizer = load_mode_and_tokenizer("THUDM/chatglm-6b", num_gpus=1)
MAX_TURNS = 20
MAX_BOXES = MAX_TURNS * 2

@ -1,8 +1,7 @@
from transformers import AutoModel, AutoTokenizer
import streamlit as st
from streamlit_chat import message
from chatglm_parallel import load_model_on_gpus
from utils import load_mode_and_tokenizer
st.set_page_config(
page_title="ChatGLM-6b 演示",
@ -12,8 +11,7 @@ st.set_page_config(
@st.cache_resource
def get_model():
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
model = load_model_on_gpus("THUDM/chatglm-6b", num_gpus=2)
model, tokenizer = load_mode_and_tokenizer("THUDM/chatglm-6b", num_gpus=1)
return tokenizer, model

Loading…
Cancel
Save