mirror of https://github.com/THUDM/ChatGLM-6B
多GPU支持, 模型文件夹没有index.json会自动保存模型到multi_gpu_model_cache_dir以支持多GPU
parent
4ee042a8e6
commit
8826b947c3
12
api.py
12
api.py
|
@ -1,6 +1,10 @@
|
||||||
|
import datetime
|
||||||
|
import json
|
||||||
|
|
||||||
|
import uvicorn
|
||||||
from fastapi import FastAPI, Request
|
from fastapi import FastAPI, Request
|
||||||
from transformers import AutoTokenizer, AutoModel
|
|
||||||
import uvicorn, json, datetime
|
from utils import load_mode_and_tokenizer
|
||||||
|
|
||||||
app = FastAPI()
|
app = FastAPI()
|
||||||
|
|
||||||
|
@ -30,6 +34,4 @@ async def create_item(request: Request):
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
uvicorn.run('api:app', host='0.0.0.0', port=8000, workers=1)
|
uvicorn.run('api:app', host='0.0.0.0', port=8000, workers=1)
|
||||||
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
|
model, tokenizer = load_mode_and_tokenizer("THUDM/chatglm-6b", num_gpus=1)
|
||||||
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
|
|
||||||
model.eval()
|
|
||||||
|
|
|
@ -1,44 +0,0 @@
|
||||||
'''
|
|
||||||
Author: lichuang
|
|
||||||
Date: 2023-03-23 09:18:13
|
|
||||||
Description: 将模型加载到多张GPU卡中,根据gpu的数量自动分配平均的显存占用
|
|
||||||
'''
|
|
||||||
from typing import Dict
|
|
||||||
|
|
||||||
from accelerate import load_checkpoint_and_dispatch
|
|
||||||
from transformers import AutoModel
|
|
||||||
|
|
||||||
|
|
||||||
def auto_configure_device_map(num_gpus) -> Dict[str, int]:
|
|
||||||
# transformer.word_embeddings 占用1层
|
|
||||||
# transformer.final_layernorm 和 lm_head 占用1层
|
|
||||||
# transformer.layers 占用 28 层
|
|
||||||
# 总共30层分配到num_gpus张卡上
|
|
||||||
num_trans_layers = 28
|
|
||||||
per_gpu_layers = 30 / num_gpus
|
|
||||||
|
|
||||||
device_map = {'transformer.word_embeddings': 0,
|
|
||||||
'transformer.final_layernorm': num_gpus - 1, 'lm_head': num_gpus - 1}
|
|
||||||
|
|
||||||
used = 1
|
|
||||||
gpu_target = 0
|
|
||||||
for i in range(num_trans_layers):
|
|
||||||
if used >= per_gpu_layers:
|
|
||||||
gpu_target += 1
|
|
||||||
used = 0
|
|
||||||
assert gpu_target < num_gpus
|
|
||||||
device_map[f'transformer.layers.{i}'] = gpu_target
|
|
||||||
used += 1
|
|
||||||
|
|
||||||
return device_map
|
|
||||||
|
|
||||||
|
|
||||||
def load_model_on_gpus(checkpoint_path, num_gpus=2):
|
|
||||||
device_map = auto_configure_device_map(num_gpus)
|
|
||||||
|
|
||||||
model = AutoModel.from_pretrained(
|
|
||||||
checkpoint_path, trust_remote_code=True)
|
|
||||||
model = model.eval()
|
|
||||||
model = load_checkpoint_and_dispatch(
|
|
||||||
model, checkpoint_path, device_map=device_map, offload_folder="offload", offload_state_dict=True).half()
|
|
||||||
return model
|
|
|
@ -1,10 +1,9 @@
|
||||||
import os
|
import os
|
||||||
import platform
|
import platform
|
||||||
from transformers import AutoTokenizer, AutoModel
|
|
||||||
from chatglm_parallel import load_model_on_gpus
|
|
||||||
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
|
from utils import load_mode_and_tokenizer
|
||||||
model = load_model_on_gpus("THUDM/chatglm-6b", num_gpus=2)
|
|
||||||
|
model, tokenizer = load_mode_and_tokenizer("THUDM/chatglm-6b", num_gpus=1)
|
||||||
|
|
||||||
os_name = platform.system()
|
os_name = platform.system()
|
||||||
clear_command = 'cls' if os_name == 'Windows' else 'clear'
|
clear_command = 'cls' if os_name == 'Windows' else 'clear'
|
||||||
|
|
|
@ -0,0 +1,66 @@
|
||||||
|
import os
|
||||||
|
from typing import Dict, Tuple, Union
|
||||||
|
|
||||||
|
from accelerate import load_checkpoint_and_dispatch
|
||||||
|
from transformers import AutoModel, AutoTokenizer
|
||||||
|
|
||||||
|
|
||||||
|
def auto_configure_device_map(num_gpus: int) -> Dict[str, int]:
|
||||||
|
# transformer.word_embeddings 占用1层
|
||||||
|
# transformer.final_layernorm 和 lm_head 占用1层
|
||||||
|
# transformer.layers 占用 28 层
|
||||||
|
# 总共30层分配到num_gpus张卡上
|
||||||
|
num_trans_layers = 28
|
||||||
|
per_gpu_layers = 30 / num_gpus
|
||||||
|
|
||||||
|
device_map = {'transformer.word_embeddings': 0,
|
||||||
|
'transformer.final_layernorm': num_gpus - 1, 'lm_head': num_gpus - 1}
|
||||||
|
|
||||||
|
used = 1
|
||||||
|
gpu_target = 0
|
||||||
|
for i in range(num_trans_layers):
|
||||||
|
if used >= per_gpu_layers:
|
||||||
|
gpu_target += 1
|
||||||
|
used = 0
|
||||||
|
assert gpu_target < num_gpus
|
||||||
|
device_map[f'transformer.layers.{i}'] = gpu_target
|
||||||
|
used += 1
|
||||||
|
|
||||||
|
return device_map
|
||||||
|
|
||||||
|
|
||||||
|
def load_model_on_gpus(checkpoint_path: Union[str, os.PathLike],
|
||||||
|
multi_gpu_model_cache_dir: Union[str, os.PathLike] = "./temp_model_dir",
|
||||||
|
num_gpus: int = 2, **kwargs):
|
||||||
|
model = AutoModel.from_pretrained(checkpoint_path, trust_remote_code=True, **kwargs)
|
||||||
|
model = model.eval()
|
||||||
|
|
||||||
|
device_map = auto_configure_device_map(num_gpus)
|
||||||
|
try:
|
||||||
|
model = load_checkpoint_and_dispatch(
|
||||||
|
model, checkpoint_path, device_map=device_map, offload_folder="offload", offload_state_dict=True).half()
|
||||||
|
except ValueError:
|
||||||
|
# index.json not found
|
||||||
|
print(f"index.json not found, auto fixing and saving model to {multi_gpu_model_cache_dir} ...")
|
||||||
|
|
||||||
|
assert multi_gpu_model_cache_dir is not None, "using auto fix, cache_dir must not be None"
|
||||||
|
model.save_pretrained(multi_gpu_model_cache_dir, max_shard_size='2GB')
|
||||||
|
model = load_checkpoint_and_dispatch(
|
||||||
|
model, multi_gpu_model_cache_dir, device_map=device_map,
|
||||||
|
offload_folder="offload", offload_state_dict=True).half()
|
||||||
|
|
||||||
|
print(f"loading model successfully, you should use checkpoint_path={multi_gpu_model_cache_dir} next time")
|
||||||
|
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
def load_mode_and_tokenizer(checkpoint_path: Union[str, os.PathLike],
|
||||||
|
multi_gpu_model_cache_dir: Union[str, os.PathLike] = "./temp_model_dir",
|
||||||
|
num_gpus: int = 1, **kwargs) -> Tuple[AutoModel, AutoTokenizer]:
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(checkpoint_path, trust_remote_code=True, **kwargs)
|
||||||
|
if num_gpus < 2:
|
||||||
|
model = AutoModel.from_pretrained(checkpoint_path, trust_remote_code=True, **kwargs).half().cuda()
|
||||||
|
model = model.eval()
|
||||||
|
else:
|
||||||
|
model = load_model_on_gpus(checkpoint_path, multi_gpu_model_cache_dir, num_gpus, **kwargs)
|
||||||
|
return model, tokenizer
|
|
@ -1,9 +1,7 @@
|
||||||
from transformers import AutoTokenizer
|
|
||||||
import gradio as gr
|
import gradio as gr
|
||||||
from chatglm_parallel import load_model_on_gpus
|
from utils import load_mode_and_tokenizer
|
||||||
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
|
model, tokenizer = load_mode_and_tokenizer("THUDM/chatglm-6b", num_gpus=1)
|
||||||
model = load_model_on_gpus("THUDM/chatglm-6b", num_gpus=2)
|
|
||||||
|
|
||||||
MAX_TURNS = 20
|
MAX_TURNS = 20
|
||||||
MAX_BOXES = MAX_TURNS * 2
|
MAX_BOXES = MAX_TURNS * 2
|
||||||
|
|
|
@ -1,8 +1,7 @@
|
||||||
from transformers import AutoModel, AutoTokenizer
|
from transformers import AutoModel, AutoTokenizer
|
||||||
import streamlit as st
|
import streamlit as st
|
||||||
from streamlit_chat import message
|
from streamlit_chat import message
|
||||||
from chatglm_parallel import load_model_on_gpus
|
from utils import load_mode_and_tokenizer
|
||||||
|
|
||||||
|
|
||||||
st.set_page_config(
|
st.set_page_config(
|
||||||
page_title="ChatGLM-6b 演示",
|
page_title="ChatGLM-6b 演示",
|
||||||
|
@ -12,8 +11,7 @@ st.set_page_config(
|
||||||
|
|
||||||
@st.cache_resource
|
@st.cache_resource
|
||||||
def get_model():
|
def get_model():
|
||||||
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
|
model, tokenizer = load_mode_and_tokenizer("THUDM/chatglm-6b", num_gpus=1)
|
||||||
model = load_model_on_gpus("THUDM/chatglm-6b", num_gpus=2)
|
|
||||||
return tokenizer, model
|
return tokenizer, model
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue