mirror of https://github.com/THUDM/ChatGLM-6B
Merge 091f0a4c4d
into 401bf3a8a7
commit
863a98a9c1
|
@ -0,0 +1,100 @@
|
|||
import os
|
||||
import sys
|
||||
import torch
|
||||
import uvicorn, json, datetime
|
||||
|
||||
from fastapi import FastAPI, Request
|
||||
from transformers import AutoTokenizer, AutoModel
|
||||
from transformers import (
|
||||
HfArgumentParser,
|
||||
AutoConfig
|
||||
)
|
||||
from arguments import ModelArguments
|
||||
|
||||
DEVICE = "cuda"
|
||||
DEVICE_ID = "0"
|
||||
CUDA_DEVICE = f"{DEVICE}:{DEVICE_ID}" if DEVICE_ID else DEVICE
|
||||
|
||||
|
||||
def torch_gc():
|
||||
if torch.cuda.is_available():
|
||||
with torch.cuda.device(CUDA_DEVICE):
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.ipc_collect()
|
||||
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
|
||||
@app.post("/")
|
||||
async def create_item(request: Request):
|
||||
global model, tokenizer
|
||||
json_post_raw = await request.json()
|
||||
json_post = json.dumps(json_post_raw)
|
||||
json_post_list = json.loads(json_post)
|
||||
prompt = json_post_list.get('prompt')
|
||||
history = json_post_list.get('history')
|
||||
max_length = json_post_list.get('max_length')
|
||||
top_p = json_post_list.get('top_p')
|
||||
temperature = json_post_list.get('temperature')
|
||||
response, history = model.chat(tokenizer,
|
||||
prompt,
|
||||
history=history,
|
||||
max_length=max_length if max_length else 2048,
|
||||
top_p=top_p if top_p else 0.7,
|
||||
temperature=temperature if temperature else 0.95)
|
||||
now = datetime.datetime.now()
|
||||
time = now.strftime("%Y-%m-%d %H:%M:%S")
|
||||
answer = {
|
||||
"response": response,
|
||||
"history": history,
|
||||
"status": 200,
|
||||
"time": time
|
||||
}
|
||||
log = "[" + time + "] " + '", prompt:"' + prompt + '", response:"' + repr(response) + '"'
|
||||
print(log)
|
||||
torch_gc()
|
||||
return answer
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = HfArgumentParser(
|
||||
(ModelArguments))
|
||||
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
||||
# If we pass only one argument to the script and it's the path to a json file,
|
||||
# let's parse it to get our arguments.
|
||||
model_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))[0]
|
||||
else:
|
||||
model_args = parser.parse_args_into_dataclasses()[0]
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_args.model_name_or_path, trust_remote_code=True)
|
||||
config = AutoConfig.from_pretrained(
|
||||
model_args.model_name_or_path, trust_remote_code=True)
|
||||
|
||||
config.pre_seq_len = model_args.pre_seq_len
|
||||
config.prefix_projection = model_args.prefix_projection
|
||||
|
||||
if model_args.ptuning_checkpoint is not None:
|
||||
print(f"Loading prefix_encoder weight from {model_args.ptuning_checkpoint}")
|
||||
model = AutoModel.from_pretrained(model_args.model_name_or_path, config=config, trust_remote_code=True)
|
||||
prefix_state_dict = torch.load(os.path.join(model_args.ptuning_checkpoint, "pytorch_model.bin"))
|
||||
new_prefix_state_dict = {}
|
||||
for k, v in prefix_state_dict.items():
|
||||
if k.startswith("transformer.prefix_encoder."):
|
||||
new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v
|
||||
model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)
|
||||
else:
|
||||
model = AutoModel.from_pretrained(model_args.model_name_or_path, config=config, trust_remote_code=True)
|
||||
|
||||
if model_args.quantization_bit is not None:
|
||||
print(f"Quantized to {model_args.quantization_bit} bit")
|
||||
model = model.quantize(model_args.quantization_bit)
|
||||
|
||||
if model_args.pre_seq_len is not None:
|
||||
# P-tuning v2
|
||||
model = model.half().cuda()
|
||||
model.transformer.prefix_encoder.float().cuda()
|
||||
|
||||
model.eval()
|
||||
uvicorn.run(app, host='0.0.0.0', port=8000, workers=1)
|
|
@ -0,0 +1,6 @@
|
|||
PRE_SEQ_LEN=128
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0 python3 api.py \
|
||||
--model_name_or_path THUDM/chatglm-6b \
|
||||
--ptuning_checkpoint output/adgen-chatglm-6b-pt-128-2e-2/checkpoint-3000 \
|
||||
--pre_seq_len $PRE_SEQ_LEN
|
Loading…
Reference in New Issue