diff --git a/PROJECT.md b/PROJECT.md index f27d7e7..0bc58a7 100644 --- a/PROJECT.md +++ b/PROJECT.md @@ -17,6 +17,7 @@ * [ChatGLM-web](https://github.com/NCZkevin/chatglm-web):基于FastAPI和Vue3搭建的ChatGLM演示网站(支持chatglm流式输出、前端调整模型参数、上下文选择、保存图片、知识库问答等功能) * [ChatGLM-6B-Engineering](https://github.com/LemonQu-GIT/ChatGLM-6B-Engineering):基于 ChatGLM-6B 后期调教,网络爬虫及 [Stable Diffusion](https://github.com/AUTOMATIC1111/stable-diffusion-webui) 实现的网络搜索及图片生成 * [ChatGLM-OpenAI-API](https://github.com/ninehills/chatglm-openai-api): 将 ChatGLM-6B 封装为 OpenAI API 风格,并通过 ngrok/cloudflare 对外提供服务,从而将 ChatGLM 快速集成到 OpenAI 的各种生态中。 +* [ChatSQL](https://github.com/yysirs/ChatSQL): 基于ChatGLM+SBERT实现NL2SQL本地化,并直接连接数据库查询数据返回结果,使得生成的SQL语句更具有实用性。 对 ChatGLM-6B 进行微调的开源项目: * [InstructGLM](https://github.com/yanqiangmiffy/InstructGLM):基于ChatGLM-6B进行指令学习,汇总开源中英文指令数据,基于Lora进行指令数据微调,开放了Alpaca、Belle微调后的Lora权重,修复web_demo重复问题 diff --git a/cli_demo.py b/cli_demo.py index da80fff..3559840 100644 --- a/cli_demo.py +++ b/cli_demo.py @@ -2,6 +2,7 @@ import os import platform import signal from transformers import AutoTokenizer, AutoModel +import readline tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda() diff --git a/ptuning/main.py b/ptuning/main.py index 43ecdf8..49b08b0 100644 --- a/ptuning/main.py +++ b/ptuning/main.py @@ -382,9 +382,10 @@ def main(): # Evaluation results = {} + max_seq_length = data_args.max_source_length + data_args.max_target_length + 1 if training_args.do_eval: logger.info("*** Evaluate ***") - metrics = trainer.evaluate(metric_key_prefix="eval", do_sample=True, top_p=0.7, max_length=512, temperature=0.95) + metrics = trainer.evaluate(metric_key_prefix="eval", do_sample=True, top_p=0.7, max_length=max_seq_length, temperature=0.95) max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset) metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset)) @@ -393,8 +394,7 @@ def main(): if training_args.do_predict: logger.info("*** Predict ***") - - predict_results = trainer.predict(predict_dataset, metric_key_prefix="predict", max_length=512, do_sample=True, top_p=0.7, temperature=0.95) + predict_results = trainer.predict(predict_dataset, metric_key_prefix="predict", max_length=max_seq_length, do_sample=True, top_p=0.7, temperature=0.95) metrics = predict_results.metrics max_predict_samples = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset) diff --git a/web_demo2.py b/web_demo2.py index 226682e..ce976b3 100644 --- a/web_demo2.py +++ b/web_demo2.py @@ -28,6 +28,8 @@ def predict(input, max_length, top_p, temperature, history=None): with container: if len(history) > 0: + if len(history)>MAX_BOXES: + history = history[-MAX_TURNS:] for i, (query, response) in enumerate(history): message(query, avatar_style="big-smile", key=str(i) + "_user") message(response, avatar_style="bottts", key=str(i)) @@ -66,4 +68,4 @@ if 'state' not in st.session_state: if st.button("发送", key="predict"): with st.spinner("AI正在思考,请稍等........"): # text generation - st.session_state["state"] = predict(prompt_text, max_length, top_p, temperature, st.session_state["state"]) \ No newline at end of file + st.session_state["state"] = predict(prompt_text, max_length, top_p, temperature, st.session_state["state"])