Merge branch 'main' into main

pull/216/head
Ji 2023-03-28 18:11:29 -07:00 committed by GitHub
commit 779869927a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 62 additions and 10 deletions

View File

@ -17,6 +17,17 @@ ChatGLM-6B 使用了和 ChatGPT 相似的技术,针对中文问答和对话进
**[2023/03/19]** 增加流式输出接口 `stream_chat`,已更新到网页版和命令行 Demo。修复输出中的中文标点。增加量化后的模型 [ChatGLM-6B-INT4](https://huggingface.co/THUDM/chatglm-6b-int4)
## 友情链接
以下是部分基于本仓库开发的开源项目:
* [ChatGLM-MNN](https://github.com/wangzhaode/ChatGLM-MNN): 一个基于 MNN 的 ChatGLM-6B C++ 推理实现,支持根据显存大小自动分配计算任务给 GPU 和 CPU
* [ChatGLM-Tuning](https://github.com/mymusise/ChatGLM-Tuning): 基于 LoRA 对 ChatGLM-6B 进行微调
以下是部分针对本项目的教程/文档:
* [Windows部署文档](https://github.com/ZhangErling/ChatGLM-6B/blob/main/deployment_windows.md)
如果你有其他好的项目/教程的话欢迎参照上述格式添加到README中并提出 [PR](https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request-from-a-fork).
## 使用方式
### 硬件需求

View File

@ -13,6 +13,13 @@ Try the [online demo](https://huggingface.co/spaces/ysharma/ChatGLM-6b_Gradio_St
**[2023/03/19]** Add streaming output function `stream_chat`, already applied in web and CLI demo. Fix Chinese punctuations in output. Add quantized model [ChatGLM-6B-INT4](https://huggingface.co/THUDM/chatglm-6b-int4).
## Projects
The following are some open source projects developed based on this repository:
* [ChatGLM-MNN](https://github.com/wangzhaode/ChatGLM-MNN): An [MNN](https://github.com/alibaba/MNN)-based implementation of ChatGLM-6B C++ inference, which supports automatic allocation of computing tasks to GPU and CPU according to the size of GPU memory
* [ChatGLM-Tuning](https://github.com/mymusise/ChatGLM-Tuning): Fine-tuning ChatGLM-6B based on LoRA
If you have other good projects, please refer to the above format to add to README and propose [PR](https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request-from-a-fork).
## Getting Started
### Hardware Requirements

33
api.py
View File

@ -1,6 +1,19 @@
from fastapi import FastAPI, Request
from transformers import AutoTokenizer, AutoModel
import uvicorn, json, datetime
import torch
DEVICE = "cuda"
DEVICE_ID = "0"
CUDA_DEVICE = f"{DEVICE}:{DEVICE_ID}" if DEVICE_ID else DEVICE
def torch_gc():
if torch.cuda.is_available():
with torch.cuda.device(CUDA_DEVICE):
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
app = FastAPI()
@ -13,7 +26,15 @@ async def create_item(request: Request):
json_post_list = json.loads(json_post)
prompt = json_post_list.get('prompt')
history = json_post_list.get('history')
response, history = model.chat(tokenizer, prompt, history=history)
max_length = json_post_list.get('max_length')
top_p = json_post_list.get('top_p')
temperature = json_post_list.get('temperature')
response, history = model.chat(tokenizer,
prompt,
history=history,
max_length=max_length if max_length else 2048,
top_p=top_p if top_p else 0.7,
temperature=temperature if temperature else 0.95)
now = datetime.datetime.now()
time = now.strftime("%Y-%m-%d %H:%M:%S")
answer = {
@ -24,12 +45,12 @@ async def create_item(request: Request):
}
log = "[" + time + "] " + '", prompt:"' + prompt + '", response:"' + repr(response) + '"'
print(log)
torch_gc()
return answer
if __name__ == '__main__':
uvicorn.run('api:app', host='0.0.0.0', port=8000, workers=1)
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
model.eval()
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
model.eval()
uvicorn.run(app, host='0.0.0.0', port=8000, workers=1)

View File

@ -1,5 +1,6 @@
import os
import platform
import signal
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
@ -8,6 +9,7 @@ model = model.eval()
os_name = platform.system()
clear_command = 'cls' if os_name == 'Windows' else 'clear'
stop_stream = False
def build_prompt(history):
@ -18,8 +20,14 @@ def build_prompt(history):
return prompt
def signal_handler(signal, frame):
global stop_stream
stop_stream = True
def main():
history = []
global stop_stream
print("欢迎使用 ChatGLM-6B 模型输入内容即可进行对话clear 清空对话历史stop 终止程序")
while True:
query = input("\n用户:")
@ -32,10 +40,15 @@ def main():
continue
count = 0
for response, history in model.stream_chat(tokenizer, query, history=history):
count += 1
if count % 8 == 0:
os.system(clear_command)
print(build_prompt(history), flush=True)
if stop_stream:
stop_stream = False
break
else:
count += 1
if count % 8 == 0:
os.system(clear_command)
print(build_prompt(history), flush=True)
signal.signal(signal.SIGINT, signal_handler)
os.system(clear_command)
print(build_prompt(history), flush=True)