mirror of https://github.com/THUDM/ChatGLM-6B
☀ feat: 重写接口
parent
bc6695b7f2
commit
770676fdd5
78
api.py
78
api.py
|
@ -1,40 +1,49 @@
|
||||||
|
import json
|
||||||
|
import datetime
|
||||||
|
import torch
|
||||||
|
import uvicorn
|
||||||
|
from typing import List
|
||||||
from fastapi import FastAPI, Request
|
from fastapi import FastAPI, Request
|
||||||
from transformers import AutoTokenizer, AutoModel
|
from transformers import AutoTokenizer, AutoModel
|
||||||
import uvicorn, json, datetime
|
from pydantic import BaseModel
|
||||||
import torch
|
from utils import load_model_on_gpus
|
||||||
|
|
||||||
DEVICE = "cuda"
|
|
||||||
DEVICE_ID = "0"
|
|
||||||
CUDA_DEVICE = f"{DEVICE}:{DEVICE_ID}" if DEVICE_ID else DEVICE
|
|
||||||
|
|
||||||
|
|
||||||
def torch_gc():
|
devices_list = [
|
||||||
|
'cuda:0',
|
||||||
|
'cuda:1'
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
def _torch_gc():
|
||||||
if torch.cuda.is_available():
|
if torch.cuda.is_available():
|
||||||
with torch.cuda.device(CUDA_DEVICE):
|
for item in devices_list:
|
||||||
torch.cuda.empty_cache()
|
with torch.cuda.device(item):
|
||||||
torch.cuda.ipc_collect()
|
torch.cuda.empty_cache()
|
||||||
|
torch.cuda.ipc_collect()
|
||||||
|
|
||||||
|
|
||||||
|
class Question(BaseModel):
|
||||||
|
prompt: str
|
||||||
|
history: List[str] = []
|
||||||
|
max_length: int = 2048
|
||||||
|
top_p: float = 0.7
|
||||||
|
temperature: float = 0.95
|
||||||
|
|
||||||
|
|
||||||
app = FastAPI()
|
app = FastAPI()
|
||||||
|
|
||||||
|
|
||||||
@app.post("/")
|
@app.post('/chat/')
|
||||||
async def create_item(request: Request):
|
async def chat(question: Question):
|
||||||
global model, tokenizer
|
response, history = model.chat(
|
||||||
json_post_raw = await request.json()
|
tokenizer,
|
||||||
json_post = json.dumps(json_post_raw)
|
question.prompt,
|
||||||
json_post_list = json.loads(json_post)
|
history=question.history,
|
||||||
prompt = json_post_list.get('prompt')
|
max_length=question.max_length,
|
||||||
history = json_post_list.get('history')
|
top_p=question.top_p,
|
||||||
max_length = json_post_list.get('max_length')
|
temperature=question.temperature
|
||||||
top_p = json_post_list.get('top_p')
|
)
|
||||||
temperature = json_post_list.get('temperature')
|
|
||||||
response, history = model.chat(tokenizer,
|
|
||||||
prompt,
|
|
||||||
history=history,
|
|
||||||
max_length=max_length if max_length else 2048,
|
|
||||||
top_p=top_p if top_p else 0.7,
|
|
||||||
temperature=temperature if temperature else 0.95)
|
|
||||||
now = datetime.datetime.now()
|
now = datetime.datetime.now()
|
||||||
time = now.strftime("%Y-%m-%d %H:%M:%S")
|
time = now.strftime("%Y-%m-%d %H:%M:%S")
|
||||||
answer = {
|
answer = {
|
||||||
|
@ -43,14 +52,15 @@ async def create_item(request: Request):
|
||||||
"status": 200,
|
"status": 200,
|
||||||
"time": time
|
"time": time
|
||||||
}
|
}
|
||||||
log = "[" + time + "] " + '", prompt:"' + prompt + '", response:"' + repr(response) + '"'
|
_torch_gc()
|
||||||
print(log)
|
|
||||||
torch_gc()
|
|
||||||
return answer
|
return answer
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == "__main__":
|
||||||
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
|
tokenizer = AutoTokenizer.from_pretrained(
|
||||||
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
|
"THUDM/chatglm-6b", trust_remote_code=True
|
||||||
|
)
|
||||||
|
model = load_model_on_gpus("THUDM/chatglm-6b", num_gpus=2)
|
||||||
|
# model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
|
||||||
model.eval()
|
model.eval()
|
||||||
uvicorn.run(app, host='0.0.0.0', port=8000, workers=1)
|
uvicorn.run(app, host="127.0.0.1", port=11001, workers=1)
|
||||||
|
|
Loading…
Reference in New Issue