@ -9,6 +9,8 @@ ChatGLM-6B uses technology similar to ChatGPT, optimized for Chinese QA and dial
Try the [online demo](https://huggingface.co/spaces/ysharma/ChatGLM-6b_Gradio_Streaming) on Huggingface Spaces.
Try the [online demo](https://huggingface.co/spaces/ysharma/ChatGLM-6b_Gradio_Streaming) on Huggingface Spaces.
## Update
## Update
**[2023/03/31]** Added a parameter-efficient tuning implementation based on [P-Tuning-v2](https://github.com/THUDM/P-tuning-v2). The minimum INT4 quantization level only needs 7GB GPU memory is enough for model tuning. See [Parameter-efficient tuning method](ptuning/README.md) for details.
**[2023/03/23]** Add API deployment, thanks to [@LemonQu-GIT](https://github.com/LemonQu-GIT). Add embedding-quantized model [ChatGLM-6B-INT4-QE](https://huggingface.co/THUDM/chatglm-6b-int4-qe). Add support for GPU inference on Mac with Apple Silicon.
**[2023/03/23]** Add API deployment, thanks to [@LemonQu-GIT](https://github.com/LemonQu-GIT). Add embedding-quantized model [ChatGLM-6B-INT4-QE](https://huggingface.co/THUDM/chatglm-6b-int4-qe). Add support for GPU inference on Mac with Apple Silicon.
**[2023/03/19]** Add streaming output function `stream_chat`, already applied in web and CLI demo. Fix Chinese punctuations in output. Add quantized model [ChatGLM-6B-INT4](https://huggingface.co/THUDM/chatglm-6b-int4).
**[2023/03/19]** Add streaming output function `stream_chat`, already applied in web and CLI demo. Fix Chinese punctuations in output. Add quantized model [ChatGLM-6B-INT4](https://huggingface.co/THUDM/chatglm-6b-int4).
@ -168,6 +170,8 @@ model = AutoModel.from_pretrained("your local path", trust_remote_code=True).hal
```
```
Then you can use GPU-accelerated model inference on Mac.
Then you can use GPU-accelerated model inference on Mac.
## Parameter-efficient Tuning
Parameter-efficient tuning based on [P-tuning v2](https://github.com/THUDM/P-tuning-v2). See [ptuning/README.md](ptuning/README.md) for details on how to use it.