mirror of https://github.com/THUDM/ChatGLM-6B
parent
c9a7b2af80
commit
63a45114a6
|
@ -0,0 +1,71 @@
|
|||
import os
|
||||
import platform
|
||||
import signal
|
||||
from transformers import AutoTokenizer, AutoModel
|
||||
import readline
|
||||
import torch
|
||||
|
||||
#首先载入Tokenizer:
|
||||
from transformers import AutoConfig, AutoModel, AutoTokenizer
|
||||
|
||||
# 载入Tokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
|
||||
#如果需要加载的是新 Checkpoint(只需包含 PrefixEncoder 参数):
|
||||
config = AutoConfig.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True, pre_seq_len=128)
|
||||
model = AutoModel.from_pretrained("THUDM/chatglm-6b", config=config, trust_remote_code=True)
|
||||
prefix_state_dict = torch.load(os.path.join(CHECKPOINT_PATH, "pytorch_model.bin"))
|
||||
new_prefix_state_dict = {}
|
||||
for k, v in prefix_state_dict.items():
|
||||
if k.startswith("transformer.prefix_encoder."):
|
||||
new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v
|
||||
model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)
|
||||
model = model.eval()
|
||||
|
||||
os_name = platform.system()
|
||||
clear_command = 'cls' if os_name == 'Windows' else 'clear'
|
||||
stop_stream = False
|
||||
|
||||
|
||||
def build_prompt(history):
|
||||
prompt = "欢迎使用 ChatGLM-6B 模型,输入内容即可进行对话,clear 清空对话历史,stop 终止程序"
|
||||
for query, response in history:
|
||||
prompt += f"\n\n用户:{query}"
|
||||
prompt += f"\n\nChatGLM-6B:{response}"
|
||||
return prompt
|
||||
|
||||
|
||||
def signal_handler(signal, frame):
|
||||
global stop_stream
|
||||
stop_stream = True
|
||||
|
||||
|
||||
def main():
|
||||
history = []
|
||||
global stop_stream
|
||||
print("欢迎使用 ChatGLM-6B 模型,输入内容即可进行对话,clear 清空对话历史,stop 终止程序")
|
||||
while True:
|
||||
query = input("\n用户:")
|
||||
if query.strip() == "stop":
|
||||
break
|
||||
if query.strip() == "clear":
|
||||
history = []
|
||||
os.system(clear_command)
|
||||
print("欢迎使用 ChatGLM-6B 模型,输入内容即可进行对话,clear 清空对话历史,stop 终止程序")
|
||||
continue
|
||||
count = 0
|
||||
for response, history in model.stream_chat(tokenizer, query, history=history):
|
||||
if stop_stream:
|
||||
stop_stream = False
|
||||
break
|
||||
else:
|
||||
count += 1
|
||||
if count % 8 == 0:
|
||||
os.system(clear_command)
|
||||
print(build_prompt(history), flush=True)
|
||||
signal.signal(signal.SIGINT, signal_handler)
|
||||
os.system(clear_command)
|
||||
print(build_prompt(history), flush=True)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
Reference in New Issue