mirror of https://github.com/THUDM/ChatGLM-6B
Update loading instructions
parent
63b1e4e804
commit
5ade1e4055
|
@ -152,7 +152,8 @@ model = AutoModel.from_pretrained("THUDM/chatglm-6b", config=config, trust_remot
|
||||||
prefix_state_dict = torch.load(os.path.join(CHECKPOINT_PATH, "pytorch_model.bin"))
|
prefix_state_dict = torch.load(os.path.join(CHECKPOINT_PATH, "pytorch_model.bin"))
|
||||||
new_prefix_state_dict = {}
|
new_prefix_state_dict = {}
|
||||||
for k, v in prefix_state_dict.items():
|
for k, v in prefix_state_dict.items():
|
||||||
new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v
|
if k.startswith("transformer.prefix_encoder."):
|
||||||
|
new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v
|
||||||
model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)
|
model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)
|
||||||
```
|
```
|
||||||
注意你可能需要将 `pre_seq_len` 改成你训练时的实际值。如果你是[从本地加载模型的话](https://github.com/THUDM/ChatGLM-6B#%E4%BB%8E%E6%9C%AC%E5%9C%B0%E5%8A%A0%E8%BD%BD%E6%A8%A1%E5%9E%8B),需要将 `THUDM/chatglm-6b` 改成本地的模型路径(注意不是checkpoint路径)。
|
注意你可能需要将 `pre_seq_len` 改成你训练时的实际值。如果你是[从本地加载模型的话](https://github.com/THUDM/ChatGLM-6B#%E4%BB%8E%E6%9C%AC%E5%9C%B0%E5%8A%A0%E8%BD%BD%E6%A8%A1%E5%9E%8B),需要将 `THUDM/chatglm-6b` 改成本地的模型路径(注意不是checkpoint路径)。
|
||||||
|
@ -160,7 +161,7 @@ model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)
|
||||||
(2) 如果需要加载的是旧 Checkpoint(包含 ChatGLM-6B 以及 PrefixEncoder 参数),或者进行的全参数微调,则直接加载整个 Checkpoint:
|
(2) 如果需要加载的是旧 Checkpoint(包含 ChatGLM-6B 以及 PrefixEncoder 参数),或者进行的全参数微调,则直接加载整个 Checkpoint:
|
||||||
|
|
||||||
```python
|
```python
|
||||||
model = AutoModel.from_pretrained(CHECKPOINT_PATH, config=config, trust_remote_code=True)
|
model = AutoModel.from_pretrained(CHECKPOINT_PATH, trust_remote_code=True)
|
||||||
```
|
```
|
||||||
|
|
||||||
之后根据需求可以进行量化,也可以直接使用:
|
之后根据需求可以进行量化,也可以直接使用:
|
||||||
|
|
|
@ -118,7 +118,8 @@ def main():
|
||||||
prefix_state_dict = torch.load(os.path.join(model_args.ptuning_checkpoint, "pytorch_model.bin"))
|
prefix_state_dict = torch.load(os.path.join(model_args.ptuning_checkpoint, "pytorch_model.bin"))
|
||||||
new_prefix_state_dict = {}
|
new_prefix_state_dict = {}
|
||||||
for k, v in prefix_state_dict.items():
|
for k, v in prefix_state_dict.items():
|
||||||
new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v
|
if k.startswith("transformer.prefix_encoder."):
|
||||||
|
new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v
|
||||||
model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)
|
model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)
|
||||||
else:
|
else:
|
||||||
model = AutoModel.from_pretrained(model_args.model_name_or_path, config=config, trust_remote_code=True)
|
model = AutoModel.from_pretrained(model_args.model_name_or_path, config=config, trust_remote_code=True)
|
||||||
|
|
Loading…
Reference in New Issue