mirror of https://github.com/THUDM/ChatGLM-6B
				
				
				
			Update loading instructions
							parent
							
								
									63b1e4e804
								
							
						
					
					
						commit
						5ade1e4055
					
				| 
						 | 
				
			
			@ -152,7 +152,8 @@ model = AutoModel.from_pretrained("THUDM/chatglm-6b", config=config, trust_remot
 | 
			
		|||
prefix_state_dict = torch.load(os.path.join(CHECKPOINT_PATH, "pytorch_model.bin"))
 | 
			
		||||
new_prefix_state_dict = {}
 | 
			
		||||
for k, v in prefix_state_dict.items():
 | 
			
		||||
    new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v
 | 
			
		||||
    if k.startswith("transformer.prefix_encoder."):
 | 
			
		||||
        new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v
 | 
			
		||||
model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)
 | 
			
		||||
```
 | 
			
		||||
注意你可能需要将 `pre_seq_len` 改成你训练时的实际值。如果你是[从本地加载模型的话](https://github.com/THUDM/ChatGLM-6B#%E4%BB%8E%E6%9C%AC%E5%9C%B0%E5%8A%A0%E8%BD%BD%E6%A8%A1%E5%9E%8B),需要将 `THUDM/chatglm-6b` 改成本地的模型路径(注意不是checkpoint路径)。
 | 
			
		||||
| 
						 | 
				
			
			@ -160,7 +161,7 @@ model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)
 | 
			
		|||
(2) 如果需要加载的是旧 Checkpoint(包含 ChatGLM-6B 以及 PrefixEncoder 参数),或者进行的全参数微调,则直接加载整个 Checkpoint:
 | 
			
		||||
 | 
			
		||||
```python
 | 
			
		||||
model = AutoModel.from_pretrained(CHECKPOINT_PATH, config=config, trust_remote_code=True)
 | 
			
		||||
model = AutoModel.from_pretrained(CHECKPOINT_PATH, trust_remote_code=True)
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
之后根据需求可以进行量化,也可以直接使用:
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -118,7 +118,8 @@ def main():
 | 
			
		|||
        prefix_state_dict = torch.load(os.path.join(model_args.ptuning_checkpoint, "pytorch_model.bin"))
 | 
			
		||||
        new_prefix_state_dict = {}
 | 
			
		||||
        for k, v in prefix_state_dict.items():
 | 
			
		||||
            new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v
 | 
			
		||||
            if k.startswith("transformer.prefix_encoder."):
 | 
			
		||||
                new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v
 | 
			
		||||
        model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)
 | 
			
		||||
    else:
 | 
			
		||||
        model = AutoModel.from_pretrained(model_args.model_name_or_path, config=config, trust_remote_code=True)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in New Issue