将配置device_map的逻辑抽离, 根据gpu数量自动配置device_map,并且自动适配所有模型

pull/241/head
saber 2023-03-26 13:44:10 +08:00
parent dc1a3df1ec
commit 4ee042a8e6
3 changed files with 29 additions and 18 deletions

View File

@ -3,28 +3,38 @@ Author: lichuang
Date: 2023-03-23 09:18:13
Description: 将模型加载到多张GPU卡中根据gpu的数量自动分配平均的显存占用
'''
from typing import Dict
from transformers import AutoModel, AutoTokenizer
from accelerate import load_checkpoint_and_dispatch
from transformers import AutoModel
def auto_configure_device_map(num_gpus) -> Dict[str, int]:
# transformer.word_embeddings 占用1层
# transformer.final_layernorm 和 lm_head 占用1层
# transformer.layers 占用 28 层
# 总共30层分配到num_gpus张卡上
num_trans_layers = 28
per_gpu_layers = 30 / num_gpus
device_map = {'transformer.word_embeddings': 0,
'transformer.final_layernorm': num_gpus - 1, 'lm_head': num_gpus - 1}
used = 1
gpu_target = 0
for i in range(num_trans_layers):
if used >= per_gpu_layers:
gpu_target += 1
used = 0
assert gpu_target < num_gpus
device_map[f'transformer.layers.{i}'] = gpu_target
used += 1
return device_map
def load_model_on_gpus(checkpoint_path, num_gpus=2):
# 总共占用13GB显存,28层transformer每层0.39GB左右
# 第一层 word_embeddings和最后一层 lm_head 层各占用1.2GB左右
num_trans_layers = 28
vram_per_layer = 0.39
average = 13/num_gpus
used = 1.2
device_map = {'transformer.word_embeddings': 0,
'transformer.final_layernorm': num_gpus-1, 'lm_head': num_gpus-1}
gpu_target = 0
for i in range(num_trans_layers):
if used > average-vram_per_layer/2 and gpu_target < num_gpus:
gpu_target += 1
used = 0
else:
used += vram_per_layer
device_map['transformer.layers.%d' % i] = gpu_target
device_map = auto_configure_device_map(num_gpus)
model = AutoModel.from_pretrained(
checkpoint_path, trust_remote_code=True)

View File

@ -4,3 +4,4 @@ icetk
cpm_kernels
torch>=1.10
gradio
accelerate

View File

@ -1,4 +1,4 @@
from transformers import AutoModel, AutoTokenizer
from transformers import AutoTokenizer
import gradio as gr
from chatglm_parallel import load_model_on_gpus