mirror of https://github.com/THUDM/ChatGLM-6B
Merge branch 'main' into main
commit
4cebde7f39
15
web_demo2.py
15
web_demo2.py
|
@ -25,20 +25,31 @@ def predict(input, history=None):
|
||||||
tokenizer, model = get_model()
|
tokenizer, model = get_model()
|
||||||
if history is None:
|
if history is None:
|
||||||
history = []
|
history = []
|
||||||
response, history = model.chat(tokenizer, input, history)
|
|
||||||
|
|
||||||
|
with container:
|
||||||
|
if len(history) > 0:
|
||||||
for i, (query, response) in enumerate(history):
|
for i, (query, response) in enumerate(history):
|
||||||
message(query, avatar_style="big-smile", key=str(i) + "_user")
|
message(query, avatar_style="big-smile", key=str(i) + "_user")
|
||||||
message(response, avatar_style="bottts", key=str(i))
|
message(response, avatar_style="bottts", key=str(i))
|
||||||
|
|
||||||
|
message(input, avatar_style="big-smile", key=str(len(history)) + "_user")
|
||||||
|
st.write("AI正在回复:")
|
||||||
|
with st.empty():
|
||||||
|
for response, history in model.stream_chat(tokenizer, input, history):
|
||||||
|
query, response = history[-1]
|
||||||
|
st.write(response)
|
||||||
|
|
||||||
return history
|
return history
|
||||||
|
|
||||||
|
|
||||||
|
container = st.container()
|
||||||
|
|
||||||
# create a prompt text for the text generation
|
# create a prompt text for the text generation
|
||||||
prompt_text = st.text_area(label="用户命令输入",
|
prompt_text = st.text_area(label="用户命令输入",
|
||||||
height = 100,
|
height = 100,
|
||||||
placeholder="请在这儿输入您的命令")
|
placeholder="请在这儿输入您的命令")
|
||||||
|
|
||||||
|
|
||||||
if 'state' not in st.session_state:
|
if 'state' not in st.session_state:
|
||||||
st.session_state['state'] = []
|
st.session_state['state'] = []
|
||||||
|
|
||||||
|
@ -46,5 +57,3 @@ if st.button("发送", key="predict"):
|
||||||
with st.spinner("AI正在思考,请稍等........"):
|
with st.spinner("AI正在思考,请稍等........"):
|
||||||
# text generation
|
# text generation
|
||||||
st.session_state["state"] = predict(prompt_text, st.session_state["state"])
|
st.session_state["state"] = predict(prompt_text, st.session_state["state"])
|
||||||
|
|
||||||
st.balloons()
|
|
Loading…
Reference in New Issue