mirror of https://github.com/THUDM/ChatGLM-6B
Merge 1f44725a51
into 401bf3a8a7
commit
49a782700b
|
@ -1,3 +1,7 @@
|
||||||
|
.vscode
|
||||||
|
ptuning/data
|
||||||
|
ptuning/output
|
||||||
|
|
||||||
# Byte-compiled / optimized / DLL files
|
# Byte-compiled / optimized / DLL files
|
||||||
__pycache__/
|
__pycache__/
|
||||||
*.py[cod]
|
*.py[cod]
|
||||||
|
|
78
api.py
78
api.py
|
@ -1,40 +1,49 @@
|
||||||
|
import json
|
||||||
|
import datetime
|
||||||
|
import torch
|
||||||
|
import uvicorn
|
||||||
|
from typing import List
|
||||||
from fastapi import FastAPI, Request
|
from fastapi import FastAPI, Request
|
||||||
from transformers import AutoTokenizer, AutoModel
|
from transformers import AutoTokenizer, AutoModel
|
||||||
import uvicorn, json, datetime
|
from pydantic import BaseModel
|
||||||
import torch
|
from utils import load_model_on_gpus
|
||||||
|
|
||||||
DEVICE = "cuda"
|
|
||||||
DEVICE_ID = "0"
|
|
||||||
CUDA_DEVICE = f"{DEVICE}:{DEVICE_ID}" if DEVICE_ID else DEVICE
|
|
||||||
|
|
||||||
|
|
||||||
def torch_gc():
|
devices_list = [
|
||||||
|
'cuda:0',
|
||||||
|
'cuda:1'
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
def _torch_gc():
|
||||||
if torch.cuda.is_available():
|
if torch.cuda.is_available():
|
||||||
with torch.cuda.device(CUDA_DEVICE):
|
for item in devices_list:
|
||||||
torch.cuda.empty_cache()
|
with torch.cuda.device(item):
|
||||||
torch.cuda.ipc_collect()
|
torch.cuda.empty_cache()
|
||||||
|
torch.cuda.ipc_collect()
|
||||||
|
|
||||||
|
|
||||||
|
class Question(BaseModel):
|
||||||
|
prompt: str
|
||||||
|
history: List[str] = []
|
||||||
|
max_length: int = 2048
|
||||||
|
top_p: float = 0.7
|
||||||
|
temperature: float = 0.95
|
||||||
|
|
||||||
|
|
||||||
app = FastAPI()
|
app = FastAPI()
|
||||||
|
|
||||||
|
|
||||||
@app.post("/")
|
@app.post('/chat/')
|
||||||
async def create_item(request: Request):
|
async def chat(question: Question):
|
||||||
global model, tokenizer
|
response, history = model.chat(
|
||||||
json_post_raw = await request.json()
|
tokenizer,
|
||||||
json_post = json.dumps(json_post_raw)
|
question.prompt,
|
||||||
json_post_list = json.loads(json_post)
|
history=question.history,
|
||||||
prompt = json_post_list.get('prompt')
|
max_length=question.max_length,
|
||||||
history = json_post_list.get('history')
|
top_p=question.top_p,
|
||||||
max_length = json_post_list.get('max_length')
|
temperature=question.temperature
|
||||||
top_p = json_post_list.get('top_p')
|
)
|
||||||
temperature = json_post_list.get('temperature')
|
|
||||||
response, history = model.chat(tokenizer,
|
|
||||||
prompt,
|
|
||||||
history=history,
|
|
||||||
max_length=max_length if max_length else 2048,
|
|
||||||
top_p=top_p if top_p else 0.7,
|
|
||||||
temperature=temperature if temperature else 0.95)
|
|
||||||
now = datetime.datetime.now()
|
now = datetime.datetime.now()
|
||||||
time = now.strftime("%Y-%m-%d %H:%M:%S")
|
time = now.strftime("%Y-%m-%d %H:%M:%S")
|
||||||
answer = {
|
answer = {
|
||||||
|
@ -43,14 +52,15 @@ async def create_item(request: Request):
|
||||||
"status": 200,
|
"status": 200,
|
||||||
"time": time
|
"time": time
|
||||||
}
|
}
|
||||||
log = "[" + time + "] " + '", prompt:"' + prompt + '", response:"' + repr(response) + '"'
|
_torch_gc()
|
||||||
print(log)
|
|
||||||
torch_gc()
|
|
||||||
return answer
|
return answer
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == "__main__":
|
||||||
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
|
tokenizer = AutoTokenizer.from_pretrained(
|
||||||
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
|
"THUDM/chatglm-6b", trust_remote_code=True
|
||||||
|
)
|
||||||
|
model = load_model_on_gpus("THUDM/chatglm-6b", num_gpus=2)
|
||||||
|
# model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
|
||||||
model.eval()
|
model.eval()
|
||||||
uvicorn.run(app, host='0.0.0.0', port=8000, workers=1)
|
uvicorn.run(app, host="127.0.0.1", port=11001, workers=1)
|
||||||
|
|
|
@ -0,0 +1,59 @@
|
||||||
|
import os
|
||||||
|
import platform
|
||||||
|
import signal
|
||||||
|
from transformers import AutoTokenizer, AutoModel
|
||||||
|
from utils import load_model_on_gpus
|
||||||
|
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
|
||||||
|
model = load_model_on_gpus("THUDM/chatglm-6b", num_gpus=2)
|
||||||
|
# model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
|
||||||
|
model = model.eval()
|
||||||
|
|
||||||
|
os_name = platform.system()
|
||||||
|
clear_command = 'cls' if os_name == 'Windows' else 'clear'
|
||||||
|
stop_stream = False
|
||||||
|
|
||||||
|
|
||||||
|
def build_prompt(history):
|
||||||
|
prompt = "欢迎使用 ChatGLM-6B 模型,输入内容即可进行对话,clear 清空对话历史,stop 终止程序"
|
||||||
|
for query, response in history:
|
||||||
|
prompt += f"\n\n用户:{query}"
|
||||||
|
prompt += f"\n\nChatGLM-6B:{response}"
|
||||||
|
return prompt
|
||||||
|
|
||||||
|
|
||||||
|
def signal_handler(signal, frame):
|
||||||
|
global stop_stream
|
||||||
|
stop_stream = True
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
history = []
|
||||||
|
global stop_stream
|
||||||
|
print("欢迎使用 ChatGLM-6B 模型,输入内容即可进行对话,clear 清空对话历史,stop 终止程序")
|
||||||
|
while True:
|
||||||
|
query = input("\n用户:")
|
||||||
|
if query.strip() == "stop":
|
||||||
|
break
|
||||||
|
if query.strip() == "clear":
|
||||||
|
history = []
|
||||||
|
os.system(clear_command)
|
||||||
|
print("欢迎使用 ChatGLM-6B 模型,输入内容即可进行对话,clear 清空对话历史,stop 终止程序")
|
||||||
|
continue
|
||||||
|
count = 0
|
||||||
|
for response, history in model.stream_chat(tokenizer, query, history=history):
|
||||||
|
if stop_stream:
|
||||||
|
stop_stream = False
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
count += 1
|
||||||
|
if count % 8 == 0:
|
||||||
|
os.system(clear_command)
|
||||||
|
print(build_prompt(history), flush=True)
|
||||||
|
signal.signal(signal.SIGINT, signal_handler)
|
||||||
|
os.system(clear_command)
|
||||||
|
print(build_prompt(history), flush=True)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
|
@ -2,10 +2,10 @@ PRE_SEQ_LEN=128
|
||||||
CHECKPOINT=adgen-chatglm-6b-pt-128-2e-2
|
CHECKPOINT=adgen-chatglm-6b-pt-128-2e-2
|
||||||
STEP=3000
|
STEP=3000
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python3 main.py \
|
CUDA_VISIBLE_DEVICES=0,1,2,3 python3 main.py \
|
||||||
--do_predict \
|
--do_predict \
|
||||||
--validation_file AdvertiseGen/dev.json \
|
--validation_file data/AdvertiseGen/dev.json \
|
||||||
--test_file AdvertiseGen/dev.json \
|
--test_file data/AdvertiseGen/dev.json \
|
||||||
--overwrite_cache \
|
--overwrite_cache \
|
||||||
--prompt_column content \
|
--prompt_column content \
|
||||||
--response_column summary \
|
--response_column summary \
|
||||||
|
|
|
@ -1,10 +1,12 @@
|
||||||
PRE_SEQ_LEN=128
|
PRE_SEQ_LEN=128
|
||||||
LR=2e-2
|
LR=2e-2
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python3 main.py \
|
export 'PYTORCH_CUDA_ALLOC_CONF=max_split_size_mb:32'
|
||||||
|
|
||||||
|
CUDA_VISIBLE_DEVICES=0,1,2,3 python3 main.py \
|
||||||
--do_train \
|
--do_train \
|
||||||
--train_file AdvertiseGen/train.json \
|
--train_file data/AdvertiseGen/train.json \
|
||||||
--validation_file AdvertiseGen/dev.json \
|
--validation_file data/AdvertiseGen/dev.json \
|
||||||
--prompt_column content \
|
--prompt_column content \
|
||||||
--response_column summary \
|
--response_column summary \
|
||||||
--overwrite_cache \
|
--overwrite_cache \
|
||||||
|
|
|
@ -119,8 +119,7 @@ with gr.Blocks() as demo:
|
||||||
def main():
|
def main():
|
||||||
global model, tokenizer
|
global model, tokenizer
|
||||||
|
|
||||||
parser = HfArgumentParser((
|
parser = HfArgumentParser((ModelArguments))
|
||||||
ModelArguments))
|
|
||||||
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
||||||
# If we pass only one argument to the script and it's the path to a json file,
|
# If we pass only one argument to the script and it's the path to a json file,
|
||||||
# let's parse it to get our arguments.
|
# let's parse it to get our arguments.
|
||||||
|
@ -158,7 +157,7 @@ def main():
|
||||||
model.transformer.prefix_encoder.float().cuda()
|
model.transformer.prefix_encoder.float().cuda()
|
||||||
|
|
||||||
model = model.eval()
|
model = model.eval()
|
||||||
demo.queue().launch(share=False, inbrowser=True)
|
demo.queue().launch(share=False, inbrowser=True, server_port=11001)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -1,7 +1,8 @@
|
||||||
PRE_SEQ_LEN=128
|
PRE_SEQ_LEN=128
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python3 web_demo.py \
|
CUDA_VISIBLE_DEVICES=0,1 python3 web_demo.py \
|
||||||
--model_name_or_path THUDM/chatglm-6b \
|
--model_name_or_path THUDM/chatglm-6b \
|
||||||
--ptuning_checkpoint output/adgen-chatglm-6b-pt-128-2e-2/checkpoint-3000 \
|
--ptuning_checkpoint output/adgen-chatglm-6b-pt-128-2e-2/checkpoint-3000 \
|
||||||
--pre_seq_len $PRE_SEQ_LEN
|
--pre_seq_len $PRE_SEQ_LEN \
|
||||||
|
--quantization_bit 4
|
||||||
|
|
||||||
|
|
28
web_demo.py
28
web_demo.py
|
@ -1,9 +1,12 @@
|
||||||
from transformers import AutoModel, AutoTokenizer
|
|
||||||
import gradio as gr
|
import gradio as gr
|
||||||
import mdtex2html
|
import mdtex2html
|
||||||
|
from transformers import AutoModel, AutoTokenizer
|
||||||
|
from utils import load_model_on_gpus
|
||||||
|
|
||||||
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
|
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
|
||||||
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
|
# model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
|
||||||
|
model = load_model_on_gpus("THUDM/chatglm-6b", num_gpus=2)
|
||||||
model = model.eval()
|
model = model.eval()
|
||||||
|
|
||||||
"""Override Chatbot.postprocess"""
|
"""Override Chatbot.postprocess"""
|
||||||
|
@ -60,7 +63,7 @@ def predict(input, chatbot, max_length, top_p, temperature, history):
|
||||||
chatbot.append((parse_text(input), ""))
|
chatbot.append((parse_text(input), ""))
|
||||||
for response, history in model.stream_chat(tokenizer, input, history, max_length=max_length, top_p=top_p,
|
for response, history in model.stream_chat(tokenizer, input, history, max_length=max_length, top_p=top_p,
|
||||||
temperature=temperature):
|
temperature=temperature):
|
||||||
chatbot[-1] = (parse_text(input), parse_text(response))
|
chatbot[-1] = (parse_text(input), parse_text(response))
|
||||||
|
|
||||||
yield chatbot, history
|
yield chatbot, history
|
||||||
|
|
||||||
|
@ -74,21 +77,24 @@ def reset_state():
|
||||||
|
|
||||||
|
|
||||||
with gr.Blocks() as demo:
|
with gr.Blocks() as demo:
|
||||||
gr.HTML("""<h1 align="center">ChatGLM</h1>""")
|
gr.HTML("""<h1 align="center">CodeLab</h1>""")
|
||||||
|
|
||||||
chatbot = gr.Chatbot()
|
chatbot = gr.Chatbot()
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
with gr.Column(scale=4):
|
with gr.Column(scale=4):
|
||||||
with gr.Column(scale=12):
|
with gr.Column(scale=12):
|
||||||
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style(
|
user_input = gr.Textbox(show_label=False, placeholder="输入聊天内容", lines=10).style(
|
||||||
container=False)
|
container=False)
|
||||||
with gr.Column(min_width=32, scale=1):
|
with gr.Column(min_width=32, scale=1):
|
||||||
submitBtn = gr.Button("Submit", variant="primary")
|
submitBtn = gr.Button("发送", variant="primary")
|
||||||
with gr.Column(scale=1):
|
with gr.Column(scale=1):
|
||||||
emptyBtn = gr.Button("Clear History")
|
emptyBtn = gr.Button("清除历史记录")
|
||||||
max_length = gr.Slider(0, 4096, value=2048, step=1.0, label="Maximum length", interactive=True)
|
max_length = gr.Slider(
|
||||||
top_p = gr.Slider(0, 1, value=0.7, step=0.01, label="Top P", interactive=True)
|
0, 4096, value=2048, step=1.0, label="Maximum length", interactive=True)
|
||||||
temperature = gr.Slider(0, 1, value=0.95, step=0.01, label="Temperature", interactive=True)
|
top_p = gr.Slider(0, 1, value=0.7, step=0.01,
|
||||||
|
label="Top P", interactive=True)
|
||||||
|
temperature = gr.Slider(
|
||||||
|
0, 1, value=0.95, step=0.01, label="Temperature", interactive=True)
|
||||||
|
|
||||||
history = gr.State([])
|
history = gr.State([])
|
||||||
|
|
||||||
|
@ -98,4 +104,4 @@ with gr.Blocks() as demo:
|
||||||
|
|
||||||
emptyBtn.click(reset_state, outputs=[chatbot, history], show_progress=True)
|
emptyBtn.click(reset_state, outputs=[chatbot, history], show_progress=True)
|
||||||
|
|
||||||
demo.queue().launch(share=False, inbrowser=True)
|
demo.queue().launch(share=False, inbrowser=False, server_port=11001)
|
||||||
|
|
Loading…
Reference in New Issue