pull/1066/merge
DealiAxy 2024-07-14 17:54:50 +08:00 committed by GitHub
commit 49a782700b
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 137 additions and 56 deletions

4
.gitignore vendored
View File

@ -1,3 +1,7 @@
.vscode
ptuning/data
ptuning/output
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]

78
api.py
View File

@ -1,40 +1,49 @@
import json
import datetime
import torch
import uvicorn
from typing import List
from fastapi import FastAPI, Request
from transformers import AutoTokenizer, AutoModel
import uvicorn, json, datetime
import torch
DEVICE = "cuda"
DEVICE_ID = "0"
CUDA_DEVICE = f"{DEVICE}:{DEVICE_ID}" if DEVICE_ID else DEVICE
from pydantic import BaseModel
from utils import load_model_on_gpus
def torch_gc():
devices_list = [
'cuda:0',
'cuda:1'
]
def _torch_gc():
if torch.cuda.is_available():
with torch.cuda.device(CUDA_DEVICE):
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
for item in devices_list:
with torch.cuda.device(item):
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
class Question(BaseModel):
prompt: str
history: List[str] = []
max_length: int = 2048
top_p: float = 0.7
temperature: float = 0.95
app = FastAPI()
@app.post("/")
async def create_item(request: Request):
global model, tokenizer
json_post_raw = await request.json()
json_post = json.dumps(json_post_raw)
json_post_list = json.loads(json_post)
prompt = json_post_list.get('prompt')
history = json_post_list.get('history')
max_length = json_post_list.get('max_length')
top_p = json_post_list.get('top_p')
temperature = json_post_list.get('temperature')
response, history = model.chat(tokenizer,
prompt,
history=history,
max_length=max_length if max_length else 2048,
top_p=top_p if top_p else 0.7,
temperature=temperature if temperature else 0.95)
@app.post('/chat/')
async def chat(question: Question):
response, history = model.chat(
tokenizer,
question.prompt,
history=question.history,
max_length=question.max_length,
top_p=question.top_p,
temperature=question.temperature
)
now = datetime.datetime.now()
time = now.strftime("%Y-%m-%d %H:%M:%S")
answer = {
@ -43,14 +52,15 @@ async def create_item(request: Request):
"status": 200,
"time": time
}
log = "[" + time + "] " + '", prompt:"' + prompt + '", response:"' + repr(response) + '"'
print(log)
torch_gc()
_torch_gc()
return answer
if __name__ == '__main__':
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
if __name__ == "__main__":
tokenizer = AutoTokenizer.from_pretrained(
"THUDM/chatglm-6b", trust_remote_code=True
)
model = load_model_on_gpus("THUDM/chatglm-6b", num_gpus=2)
# model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
model.eval()
uvicorn.run(app, host='0.0.0.0', port=8000, workers=1)
uvicorn.run(app, host="127.0.0.1", port=11001, workers=1)

59
cli_demo_gpus.py Normal file
View File

@ -0,0 +1,59 @@
import os
import platform
import signal
from transformers import AutoTokenizer, AutoModel
from utils import load_model_on_gpus
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
model = load_model_on_gpus("THUDM/chatglm-6b", num_gpus=2)
# model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
model = model.eval()
os_name = platform.system()
clear_command = 'cls' if os_name == 'Windows' else 'clear'
stop_stream = False
def build_prompt(history):
prompt = "欢迎使用 ChatGLM-6B 模型输入内容即可进行对话clear 清空对话历史stop 终止程序"
for query, response in history:
prompt += f"\n\n用户:{query}"
prompt += f"\n\nChatGLM-6B{response}"
return prompt
def signal_handler(signal, frame):
global stop_stream
stop_stream = True
def main():
history = []
global stop_stream
print("欢迎使用 ChatGLM-6B 模型输入内容即可进行对话clear 清空对话历史stop 终止程序")
while True:
query = input("\n用户:")
if query.strip() == "stop":
break
if query.strip() == "clear":
history = []
os.system(clear_command)
print("欢迎使用 ChatGLM-6B 模型输入内容即可进行对话clear 清空对话历史stop 终止程序")
continue
count = 0
for response, history in model.stream_chat(tokenizer, query, history=history):
if stop_stream:
stop_stream = False
break
else:
count += 1
if count % 8 == 0:
os.system(clear_command)
print(build_prompt(history), flush=True)
signal.signal(signal.SIGINT, signal_handler)
os.system(clear_command)
print(build_prompt(history), flush=True)
if __name__ == "__main__":
main()

View File

@ -2,10 +2,10 @@ PRE_SEQ_LEN=128
CHECKPOINT=adgen-chatglm-6b-pt-128-2e-2
STEP=3000
CUDA_VISIBLE_DEVICES=0 python3 main.py \
CUDA_VISIBLE_DEVICES=0,1,2,3 python3 main.py \
--do_predict \
--validation_file AdvertiseGen/dev.json \
--test_file AdvertiseGen/dev.json \
--validation_file data/AdvertiseGen/dev.json \
--test_file data/AdvertiseGen/dev.json \
--overwrite_cache \
--prompt_column content \
--response_column summary \

View File

@ -1,10 +1,12 @@
PRE_SEQ_LEN=128
LR=2e-2
CUDA_VISIBLE_DEVICES=0 python3 main.py \
export 'PYTORCH_CUDA_ALLOC_CONF=max_split_size_mb:32'
CUDA_VISIBLE_DEVICES=0,1,2,3 python3 main.py \
--do_train \
--train_file AdvertiseGen/train.json \
--validation_file AdvertiseGen/dev.json \
--train_file data/AdvertiseGen/train.json \
--validation_file data/AdvertiseGen/dev.json \
--prompt_column content \
--response_column summary \
--overwrite_cache \

View File

@ -119,8 +119,7 @@ with gr.Blocks() as demo:
def main():
global model, tokenizer
parser = HfArgumentParser((
ModelArguments))
parser = HfArgumentParser((ModelArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
@ -158,7 +157,7 @@ def main():
model.transformer.prefix_encoder.float().cuda()
model = model.eval()
demo.queue().launch(share=False, inbrowser=True)
demo.queue().launch(share=False, inbrowser=True, server_port=11001)

View File

@ -1,7 +1,8 @@
PRE_SEQ_LEN=128
CUDA_VISIBLE_DEVICES=0 python3 web_demo.py \
CUDA_VISIBLE_DEVICES=0,1 python3 web_demo.py \
--model_name_or_path THUDM/chatglm-6b \
--ptuning_checkpoint output/adgen-chatglm-6b-pt-128-2e-2/checkpoint-3000 \
--pre_seq_len $PRE_SEQ_LEN
--pre_seq_len $PRE_SEQ_LEN \
--quantization_bit 4

View File

@ -1,9 +1,12 @@
from transformers import AutoModel, AutoTokenizer
import gradio as gr
import mdtex2html
from transformers import AutoModel, AutoTokenizer
from utils import load_model_on_gpus
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
# model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
model = load_model_on_gpus("THUDM/chatglm-6b", num_gpus=2)
model = model.eval()
"""Override Chatbot.postprocess"""
@ -60,7 +63,7 @@ def predict(input, chatbot, max_length, top_p, temperature, history):
chatbot.append((parse_text(input), ""))
for response, history in model.stream_chat(tokenizer, input, history, max_length=max_length, top_p=top_p,
temperature=temperature):
chatbot[-1] = (parse_text(input), parse_text(response))
chatbot[-1] = (parse_text(input), parse_text(response))
yield chatbot, history
@ -74,21 +77,24 @@ def reset_state():
with gr.Blocks() as demo:
gr.HTML("""<h1 align="center">ChatGLM</h1>""")
gr.HTML("""<h1 align="center">CodeLab</h1>""")
chatbot = gr.Chatbot()
with gr.Row():
with gr.Column(scale=4):
with gr.Column(scale=12):
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style(
user_input = gr.Textbox(show_label=False, placeholder="输入聊天内容", lines=10).style(
container=False)
with gr.Column(min_width=32, scale=1):
submitBtn = gr.Button("Submit", variant="primary")
submitBtn = gr.Button("发送", variant="primary")
with gr.Column(scale=1):
emptyBtn = gr.Button("Clear History")
max_length = gr.Slider(0, 4096, value=2048, step=1.0, label="Maximum length", interactive=True)
top_p = gr.Slider(0, 1, value=0.7, step=0.01, label="Top P", interactive=True)
temperature = gr.Slider(0, 1, value=0.95, step=0.01, label="Temperature", interactive=True)
emptyBtn = gr.Button("清除历史记录")
max_length = gr.Slider(
0, 4096, value=2048, step=1.0, label="Maximum length", interactive=True)
top_p = gr.Slider(0, 1, value=0.7, step=0.01,
label="Top P", interactive=True)
temperature = gr.Slider(
0, 1, value=0.95, step=0.01, label="Temperature", interactive=True)
history = gr.State([])
@ -98,4 +104,4 @@ with gr.Blocks() as demo:
emptyBtn.click(reset_state, outputs=[chatbot, history], show_progress=True)
demo.queue().launch(share=False, inbrowser=True)
demo.queue().launch(share=False, inbrowser=False, server_port=11001)