Merge pull request #241 from Cherrysaber/dev-multi-gpus

Add Multi-GPU support
pull/265/merge
Zhengxiao Du 2023-03-28 19:33:04 +08:00 committed by GitHub
commit 43b7241e67
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 120 additions and 17 deletions

View File

@ -167,6 +167,17 @@ model = AutoModel.from_pretrained("your local path", trust_remote_code=True).hal
```
即可使用在 Mac 上使用 GPU 加速模型推理。
### 多卡部署
```shell
pip install accelerate
```
```python
from utils import load_model_and_tokenizer
model, tokenizer = load_model_and_tokenizer("your local path", num_gpus=2)
```
即可将模型部署到多卡上进行推理。
## ChatGLM-6B 示例
以下是一些使用 `web_demo.py` 得到的示例截图。更多 ChatGLM-6B 的可能,等待你来探索发现!

View File

@ -156,6 +156,18 @@ model = AutoModel.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=Tru
**For Mac users**: if your encounter the error `RuntimeError: Unknown platform: darwin`, please refer to this [Issue](https://github.com/THUDM/ChatGLM-6B/issues/6#issuecomment-1470060041).
### Multi-GPU Deployment
```shell
pip install accelerate
```
```python
from utils import load_model_and_tokenizer
model, tokenizer = load_model_and_tokenizer("your local path", num_gpus=2)
```
## ChatGLM-6B Examples
The following are some Chinese examples with `web_demo.py`. Welcome to explore more possibility with ChatGLM-6B.

12
api.py
View File

@ -1,6 +1,10 @@
import datetime
import json
import uvicorn
from fastapi import FastAPI, Request
from transformers import AutoTokenizer, AutoModel
import uvicorn, json, datetime
from utils import load_model_and_tokenizer
app = FastAPI()
@ -30,6 +34,4 @@ async def create_item(request: Request):
if __name__ == '__main__':
uvicorn.run('api:app', host='0.0.0.0', port=8000, workers=1)
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
model.eval()
model, tokenizer = load_model_and_tokenizer("THUDM/chatglm-6b", num_gpus=1)

View File

@ -1,10 +1,9 @@
import os
import platform
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
model = model.eval()
from utils import load_model_and_tokenizer
model, tokenizer = load_model_and_tokenizer("THUDM/chatglm-6b", num_gpus=1)
os_name = platform.system()
clear_command = 'cls' if os_name == 'Windows' else 'clear'

View File

@ -4,3 +4,4 @@ icetk
cpm_kernels
torch>=1.10
gradio
accelerate

81
utils.py Normal file
View File

@ -0,0 +1,81 @@
import os
from typing import Dict, Tuple, Union, Optional
from torch.nn import Module
from transformers import AutoModel, AutoTokenizer
from transformers.tokenization_utils import PreTrainedTokenizer
def auto_configure_device_map(num_gpus: int) -> Dict[str, int]:
# transformer.word_embeddings 占用1层
# transformer.final_layernorm 和 lm_head 占用1层
# transformer.layers 占用 28 层
# 总共30层分配到num_gpus张卡上
num_trans_layers = 28
per_gpu_layers = 30 / num_gpus
# bugfix: 在linux中调用torch.embedding传入的weight,input不在同一device上,导致RuntimeError
# windows下 model.device 会被设置成 transformer.word_embeddings.device
# linux下 model.device 会被设置成 lm_head.device
# 在调用chat或者stream_chat时,input_ids会被放到model.device上
# 如果transformer.word_embeddings.device和model.device不同,则会导致RuntimeError
# 因此这里将transformer.word_embeddings,transformer.final_layernorm,lm_head都放到第一张卡上
device_map = {'transformer.word_embeddings': 0,
'transformer.final_layernorm': 0, 'lm_head': 0}
used = 2
gpu_target = 0
for i in range(num_trans_layers):
if used >= per_gpu_layers:
gpu_target += 1
used = 0
assert gpu_target < num_gpus
device_map[f'transformer.layers.{i}'] = gpu_target
used += 1
return device_map
def load_model_on_gpus(checkpoint_path: Union[str, os.PathLike], num_gpus: int = 2,
multi_gpu_model_cache_dir: Union[str, os.PathLike] = "./temp_model_dir",
device_map: Optional[Dict[str, int]] = None,
tokenizer: Optional[PreTrainedTokenizer] = None, **kwargs) -> Module:
from accelerate import load_checkpoint_and_dispatch
model = AutoModel.from_pretrained(checkpoint_path, trust_remote_code=True, **kwargs)
model = model.eval()
if device_map is None:
device_map = auto_configure_device_map(num_gpus)
try:
model = load_checkpoint_and_dispatch(
model, checkpoint_path, device_map=device_map, offload_folder="offload", offload_state_dict=True).half()
except ValueError:
# index.json not found
print(f"index.json not found, auto fixing and saving model to {multi_gpu_model_cache_dir} ...")
assert multi_gpu_model_cache_dir is not None, "using auto fix, cache_dir must not be None"
model.save_pretrained(multi_gpu_model_cache_dir, max_shard_size='2GB')
model = load_checkpoint_and_dispatch(
model, multi_gpu_model_cache_dir, device_map=device_map,
offload_folder="offload", offload_state_dict=True).half()
if tokenizer is not None:
tokenizer.save_pretrained(multi_gpu_model_cache_dir)
print(f"loading model successfully, you should use checkpoint_path={multi_gpu_model_cache_dir} next time")
return model
def load_model_and_tokenizer(checkpoint_path: Union[str, os.PathLike], num_gpus: int = 1,
multi_gpu_model_cache_dir: Union[str, os.PathLike] = "./temp_model_dir",
**kwargs) -> Tuple[Module, PreTrainedTokenizer]:
tokenizer = AutoTokenizer.from_pretrained(checkpoint_path, trust_remote_code=True, **kwargs)
if num_gpus < 2:
model = AutoModel.from_pretrained(checkpoint_path, trust_remote_code=True, **kwargs).half().cuda()
model = model.eval()
else:
model = load_model_on_gpus(checkpoint_path, num_gpus=num_gpus,
multi_gpu_model_cache_dir=multi_gpu_model_cache_dir,
tokenizer=tokenizer, **kwargs)
return model, tokenizer

View File

@ -1,9 +1,8 @@
from transformers import AutoModel, AutoTokenizer
import gradio as gr
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
model = model.eval()
from utils import load_model_and_tokenizer
model, tokenizer = load_model_and_tokenizer("THUDM/chatglm-6b", num_gpus=1)
MAX_TURNS = 20
MAX_BOXES = MAX_TURNS * 2

View File

@ -1,7 +1,7 @@
from transformers import AutoModel, AutoTokenizer
import streamlit as st
from streamlit_chat import message
from utils import load_model_and_tokenizer
st.set_page_config(
page_title="ChatGLM-6b 演示",
@ -11,9 +11,7 @@ st.set_page_config(
@st.cache_resource
def get_model():
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
model = model.eval()
model, tokenizer = load_model_and_tokenizer("THUDM/chatglm-6b", num_gpus=1)
return tokenizer, model