mirror of https://github.com/THUDM/ChatGLM-6B
commit
3e9e02fb1d
28
api.py
28
api.py
|
@ -1,6 +1,19 @@
|
||||||
from fastapi import FastAPI, Request
|
from fastapi import FastAPI, Request
|
||||||
from transformers import AutoTokenizer, AutoModel
|
from transformers import AutoTokenizer, AutoModel
|
||||||
import uvicorn, json, datetime
|
import uvicorn, json, datetime
|
||||||
|
import torch
|
||||||
|
|
||||||
|
DEVICE = "cuda"
|
||||||
|
DEVICE_ID = "0"
|
||||||
|
CUDA_DEVICE = f"{DEVICE}:{DEVICE_ID}" if DEVICE_ID else DEVICE
|
||||||
|
|
||||||
|
|
||||||
|
def torch_gc():
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
with torch.cuda.device(CUDA_DEVICE):
|
||||||
|
torch.cuda.empty_cache()
|
||||||
|
torch.cuda.ipc_collect()
|
||||||
|
|
||||||
|
|
||||||
app = FastAPI()
|
app = FastAPI()
|
||||||
|
|
||||||
|
@ -13,7 +26,15 @@ async def create_item(request: Request):
|
||||||
json_post_list = json.loads(json_post)
|
json_post_list = json.loads(json_post)
|
||||||
prompt = json_post_list.get('prompt')
|
prompt = json_post_list.get('prompt')
|
||||||
history = json_post_list.get('history')
|
history = json_post_list.get('history')
|
||||||
response, history = model.chat(tokenizer, prompt, history=history)
|
max_length = json_post_list.get('max_length')
|
||||||
|
top_p = json_post_list.get('top_p')
|
||||||
|
temperature = json_post_list.get('temperature')
|
||||||
|
response, history = model.chat(tokenizer,
|
||||||
|
prompt,
|
||||||
|
history=history,
|
||||||
|
max_length=max_length if max_length else 2048,
|
||||||
|
top_p=top_p if top_p else 0.7,
|
||||||
|
temperature=temperature if temperature else 0.95)
|
||||||
now = datetime.datetime.now()
|
now = datetime.datetime.now()
|
||||||
time = now.strftime("%Y-%m-%d %H:%M:%S")
|
time = now.strftime("%Y-%m-%d %H:%M:%S")
|
||||||
answer = {
|
answer = {
|
||||||
|
@ -24,12 +45,13 @@ async def create_item(request: Request):
|
||||||
}
|
}
|
||||||
log = "[" + time + "] " + '", prompt:"' + prompt + '", response:"' + repr(response) + '"'
|
log = "[" + time + "] " + '", prompt:"' + prompt + '", response:"' + repr(response) + '"'
|
||||||
print(log)
|
print(log)
|
||||||
|
torch_gc()
|
||||||
return answer
|
return answer
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
uvicorn.run('api:app', host='0.0.0.0', port=8000, workers=1)
|
uvicorn.run(app, host='0.0.0.0', port=8000, workers=1)
|
||||||
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
|
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
|
||||||
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
|
model = AutoModel.from_pretrained("THUDM/chatglm_6b", trust_remote_code=True).half().cuda()
|
||||||
model.eval()
|
model.eval()
|
||||||
|
|
Loading…
Reference in New Issue