mirror of https://github.com/THUDM/ChatGLM-6B
commit
3e9e02fb1d
28
api.py
28
api.py
|
@ -1,6 +1,19 @@
|
|||
from fastapi import FastAPI, Request
|
||||
from transformers import AutoTokenizer, AutoModel
|
||||
import uvicorn, json, datetime
|
||||
import torch
|
||||
|
||||
DEVICE = "cuda"
|
||||
DEVICE_ID = "0"
|
||||
CUDA_DEVICE = f"{DEVICE}:{DEVICE_ID}" if DEVICE_ID else DEVICE
|
||||
|
||||
|
||||
def torch_gc():
|
||||
if torch.cuda.is_available():
|
||||
with torch.cuda.device(CUDA_DEVICE):
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.ipc_collect()
|
||||
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
|
@ -13,7 +26,15 @@ async def create_item(request: Request):
|
|||
json_post_list = json.loads(json_post)
|
||||
prompt = json_post_list.get('prompt')
|
||||
history = json_post_list.get('history')
|
||||
response, history = model.chat(tokenizer, prompt, history=history)
|
||||
max_length = json_post_list.get('max_length')
|
||||
top_p = json_post_list.get('top_p')
|
||||
temperature = json_post_list.get('temperature')
|
||||
response, history = model.chat(tokenizer,
|
||||
prompt,
|
||||
history=history,
|
||||
max_length=max_length if max_length else 2048,
|
||||
top_p=top_p if top_p else 0.7,
|
||||
temperature=temperature if temperature else 0.95)
|
||||
now = datetime.datetime.now()
|
||||
time = now.strftime("%Y-%m-%d %H:%M:%S")
|
||||
answer = {
|
||||
|
@ -24,12 +45,13 @@ async def create_item(request: Request):
|
|||
}
|
||||
log = "[" + time + "] " + '", prompt:"' + prompt + '", response:"' + repr(response) + '"'
|
||||
print(log)
|
||||
torch_gc()
|
||||
return answer
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
uvicorn.run('api:app', host='0.0.0.0', port=8000, workers=1)
|
||||
uvicorn.run(app, host='0.0.0.0', port=8000, workers=1)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
|
||||
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
|
||||
model = AutoModel.from_pretrained("THUDM/chatglm_6b", trust_remote_code=True).half().cuda()
|
||||
model.eval()
|
||||
|
|
Loading…
Reference in New Issue