mirror of https://github.com/THUDM/ChatGLM-6B
Add files via upload
parent
baec759103
commit
23583a79eb
|
@ -0,0 +1,157 @@
|
|||
import json
|
||||
from langchain.llms.base import LLM
|
||||
from typing import Optional, List
|
||||
from langchain.llms.utils import enforce_stop_tokens
|
||||
from transformers import AutoTokenizer, AutoModel, AutoConfig
|
||||
import torch
|
||||
from langchain.callbacks.base import CallbackManager
|
||||
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
||||
from typing import Dict, Tuple, Union, Optional
|
||||
|
||||
|
||||
Chatglm_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
||||
DEVICE_ID = "0" if torch.cuda.is_available() else None
|
||||
DEVICE = f"{Chatglm_DEVICE}:{DEVICE_ID}" if DEVICE_ID else Chatglm_DEVICE
|
||||
|
||||
# streaming reponse
|
||||
STREAMING = True
|
||||
|
||||
# model name
|
||||
Chatglm_MODEL = "chatglm-6b-local"
|
||||
|
||||
# supported LLM models
|
||||
llm_model_dict = {
|
||||
"chatglm-6b-int4-qe": "THUDM/chatglm-6b-int4-qe",
|
||||
"chatglm-6b-int4": "THUDM/chatglm-6b-int4",
|
||||
"chatglm-6b-int8": "THUDM/chatglm-6b-int8",
|
||||
"chatglm-6b": "THUDM/chatglm-6b",
|
||||
"chatglm-6b-local": r"", #your local model path
|
||||
}
|
||||
|
||||
def torch_gc(DEVICE):
|
||||
if torch.cuda.is_available():
|
||||
with torch.cuda.device(DEVICE):
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.ipc_collect()
|
||||
elif torch.backends.mps.is_available():
|
||||
try:
|
||||
torch.mps.empty_cache()
|
||||
except Exception as e:
|
||||
print(e)
|
||||
|
||||
def auto_configure_device_map(num_gpus: int) -> Dict[str, int]:
|
||||
# transformer.word_embeddings 占用1层
|
||||
# transformer.final_layernorm 和 lm_head 占用1层
|
||||
# transformer.layers 占用 28 层
|
||||
# 总共30层分配到num_gpus张卡上
|
||||
num_trans_layers = 28
|
||||
per_gpu_layers = 30 / num_gpus
|
||||
# bugfix: 在linux中调用torch.embedding传入的weight,input不在同一device上,导致RuntimeError
|
||||
# windows下 model.device 会被设置成 transformer.word_embeddings.device
|
||||
# linux下 model.device 会被设置成 lm_head.device
|
||||
# 在调用chat或者stream_chat时,input_ids会被放到model.device上
|
||||
# 如果transformer.word_embeddings.device和model.device不同,则会导致RuntimeError
|
||||
# 因此这里将transformer.word_embeddings,transformer.final_layernorm,lm_head都放到第一张卡上
|
||||
device_map = {'transformer.word_embeddings': 0, 'transformer.final_layernorm': 0, 'lm_head': 0}
|
||||
used = 2
|
||||
gpu_target = 0
|
||||
for i in range(num_trans_layers):
|
||||
if used >= per_gpu_layers:
|
||||
gpu_target += 1
|
||||
used = 0
|
||||
assert gpu_target < num_gpus
|
||||
device_map[f'transformer.layers.{i}'] = gpu_target
|
||||
used += 1
|
||||
|
||||
return device_map
|
||||
|
||||
|
||||
class ChatGLM(LLM):
|
||||
max_token: int = 10000
|
||||
temperature: float = 0.01
|
||||
top_p = 0.9
|
||||
# history = []
|
||||
tokenizer: object = None
|
||||
model: object = None
|
||||
history_len: int = 10
|
||||
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
return "ChatGLM-6b"
|
||||
|
||||
def _call(self, prompt: str, history: List[List[str]] = [], streaming: bool = STREAMING): #out Tuple[str, List[List[str]]]:
|
||||
if streaming:
|
||||
for inum, (stream_resp, _) in enumerate(
|
||||
self.model.stream_chat(
|
||||
self.tokenizer,
|
||||
prompt,
|
||||
history=history[-self.history_len:-1] if self.history_len > 0 else [],
|
||||
max_length=self.max_token,
|
||||
temperature=self.temperature,
|
||||
)):
|
||||
torch_gc(DEVICE)
|
||||
if inum == 0:
|
||||
history += [[prompt, stream_resp]]
|
||||
else:
|
||||
history[-1] = [prompt, stream_resp]
|
||||
yield stream_resp, history
|
||||
else:
|
||||
response, _ = self.model.chat(
|
||||
self.tokenizer,
|
||||
prompt,
|
||||
history=history[-self.history_len:] if self.history_len > 0 else [],
|
||||
max_length=self.max_token,
|
||||
temperature=self.temperature,
|
||||
)
|
||||
torch_gc(DEVICE)
|
||||
history += [[prompt, response]]
|
||||
yield response, history
|
||||
|
||||
def load_model(self,
|
||||
model_name_or_path: str = "THUDM/chatglm-6b",
|
||||
llm_device=Chatglm_DEVICE,
|
||||
# use_ptuning_v2=False,
|
||||
device_map: Optional[Dict[str, int]] = None,
|
||||
**kwargs):
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True)
|
||||
|
||||
model_config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True)
|
||||
|
||||
if torch.cuda.is_available() and llm_device.lower().startswith("cuda"):
|
||||
# 根据当前设备GPU数量决定是否进行多卡部署
|
||||
num_gpus = torch.cuda.device_count()
|
||||
if num_gpus < 2 and device_map is None:
|
||||
self.model = (AutoModel.from_pretrained(model_name_or_path,
|
||||
config=model_config,
|
||||
trust_remote_code=True,
|
||||
**kwargs).half().cuda())
|
||||
else:
|
||||
from accelerate import dispatch_model
|
||||
model = (AutoModel.from_pretrained(model_name_or_path, trust_remote_code=True, config=model_config,
|
||||
**kwargs).half())
|
||||
# 可传入device_map自定义每张卡的部署情况
|
||||
if device_map is None:
|
||||
device_map = auto_configure_device_map(num_gpus)
|
||||
self.model = dispatch_model(model, device_map=device_map)
|
||||
else:
|
||||
self.model = (AutoModel.from_pretrained(model_name_or_path, config=model_config, trust_remote_code=True,
|
||||
**kwargs).float().to(llm_device))
|
||||
|
||||
self.model = self.model.eval()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
llm = ChatGLM()
|
||||
llm.load_model(
|
||||
model_name_or_path=llm_model_dict[Chatglm_MODEL],
|
||||
llm_device=Chatglm_DEVICE,
|
||||
)
|
||||
last_print_len = 0
|
||||
for resp, history in llm._call("你好", streaming=True):
|
||||
print(resp[last_print_len:], end="", flush=True)
|
||||
last_print_len = len(resp)
|
||||
for resp, history in llm._call("你好", streaming=False):
|
||||
print(resp)
|
Loading…
Reference in New Issue