|
|
@ -141,7 +141,7 @@ from transformers import AutoConfig, AutoModel, AutoTokenizer
|
|
|
|
# Load model and tokenizer of ChatGLM-6B
|
|
|
|
# Load model and tokenizer of ChatGLM-6B
|
|
|
|
config = AutoConfig.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True, pre_seq_len=128)
|
|
|
|
config = AutoConfig.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True, pre_seq_len=128)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
|
|
|
|
model = AutoModel.from_pretrained("THUDM/chatglm-6b", config=config, trust_remote_code=True).half().cuda()
|
|
|
|
model = AutoModel.from_pretrained("THUDM/chatglm-6b", config=config, trust_remote_code=True)
|
|
|
|
|
|
|
|
|
|
|
|
# Load PrefixEncoder
|
|
|
|
# Load PrefixEncoder
|
|
|
|
prefix_state_dict = torch.load(os.path.join(CHECKPOINT_PATH, "pytorch_model.bin"))
|
|
|
|
prefix_state_dict = torch.load(os.path.join(CHECKPOINT_PATH, "pytorch_model.bin"))
|
|
|
@ -150,6 +150,10 @@ for k, v in prefix_state_dict.items():
|
|
|
|
new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v
|
|
|
|
new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v
|
|
|
|
model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)
|
|
|
|
model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print(f"Quantized to 4 bit")
|
|
|
|
|
|
|
|
model = model.quantize(4)
|
|
|
|
|
|
|
|
model = model.half().cuda()
|
|
|
|
|
|
|
|
model.transformer.prefix_encoder.float()
|
|
|
|
model = model.eval()
|
|
|
|
model = model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
response, history = model.chat(tokenizer, "你好", history=[])
|
|
|
|
response, history = model.chat(tokenizer, "你好", history=[])
|
|
|
|