pull/1387/head
sxl1993 2023-08-25 06:14:28 -07:00
parent d835c4b001
commit 00046a5750
7 changed files with 1388 additions and 794 deletions

View File

@ -1,28 +1,28 @@
PRE_SEQ_LEN=128
LR=2e-2
LR=1e-4
MASTER_PORT=$(shuf -n 1 -i 10000-65535)
deepspeed --num_gpus=4 --master_port $MASTER_PORT main.py \
deepspeed --include="localhost:0,1" main.py \
--deepspeed deepspeed.json \
--do_train \
--train_file AdvertiseGen/train.json \
--test_file AdvertiseGen/dev.json \
--prompt_column content \
--response_column summary \
--preprocessing_num_workers 10 \
--overwrite_cache \
--model_name_or_path THUDM/chatglm-6b \
--output_dir ./output/adgen-chatglm-6b-ft-$LR \
--output_dir ./output/ds-chatglm-6b-ptuning-$LR \
--overwrite_output_dir \
--max_source_length 64 \
--max_target_length 64 \
--per_device_train_batch_size 4 \
--per_device_train_batch_size 2 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 1 \
--predict_with_generate \
--max_steps 5000 \
--max_steps 1000 \
--logging_steps 10 \
--save_steps 1000 \
--learning_rate $LR \
--fp16
--pre_seq_len $PRE_SEQ_LEN \
--save_total_limit 1 \
--fp16

436
ptuning/main_parallel.py Normal file
View File

@ -0,0 +1,436 @@
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for sequence to sequence.
"""
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.
import logging
import os
import sys
import json
import numpy as np
from datasets import load_dataset
import jieba
from rouge_chinese import Rouge
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
import torch
import transformers
from transformers import (
AutoConfig,
AutoModel,
AutoTokenizer,
DataCollatorForSeq2Seq,
HfArgumentParser,
Seq2SeqTrainingArguments,
set_seed,
)
from trainer_seq2seq import Seq2SeqTrainer
from arguments import ModelArguments, DataTrainingArguments
logger = logging.getLogger(__name__)
def main():
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
# datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
transformers.logging.set_verbosity_info()
# Set seed before initializing model.
set_seed(training_args.seed)
# Load dataset
data_files = {}
if data_args.train_file is not None:
data_files["train"] = data_args.train_file
extension = data_args.train_file.split(".")[-1]
if data_args.validation_file is not None:
data_files["validation"] = data_args.validation_file
extension = data_args.validation_file.split(".")[-1]
if data_args.test_file is not None:
data_files["test"] = data_args.test_file
extension = data_args.test_file.split(".")[-1]
raw_datasets = load_dataset(
extension,
data_files=data_files,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
)
# Load pretrained model and tokenizer
config = AutoConfig.from_pretrained(model_args.model_name_or_path, trust_remote_code=True)
config.pre_seq_len = model_args.pre_seq_len
config.prefix_projection = model_args.prefix_projection
tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, trust_remote_code=True)
if model_args.ptuning_checkpoint is not None:
# Evaluation
# Loading extra state dict of prefix encoder
model = AutoModel.from_pretrained(model_args.model_name_or_path, config=config, trust_remote_code=True)
prefix_state_dict = torch.load(os.path.join(model_args.ptuning_checkpoint, "pytorch_model.bin"))
new_prefix_state_dict = {}
for k, v in prefix_state_dict.items():
if k.startswith("transformer.prefix_encoder."):
new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v
model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)
else:
model = AutoModel.from_pretrained(model_args.model_name_or_path, config=config,
trust_remote_code=True, device_map="auto")
model.gradient_checkpointing_enable()
model.enable_input_require_grads()
model.is_parallelizable = True
model.model_parallel = True
model.config.use_cache = False
if model_args.quantization_bit is not None:
print(f"Quantized to {model_args.quantization_bit} bit")
model = model.quantize(model_args.quantization_bit)
if model_args.pre_seq_len is not None:
# P-tuning v2
model = model.half()
model.transformer.prefix_encoder.float()
else:
# Finetune
model = model.float()
prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
# Preprocessing the datasets.
# We need to tokenize inputs and targets.
if training_args.do_train:
column_names = raw_datasets["train"].column_names
elif training_args.do_eval:
column_names = raw_datasets["validation"].column_names
elif training_args.do_predict:
column_names = raw_datasets["test"].column_names
else:
logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
return
# Get the column names for input/target.
prompt_column = data_args.prompt_column
response_column = data_args.response_column
history_column = data_args.history_column
# Temporarily set max_target_length for training.
max_target_length = data_args.max_target_length
def preprocess_function_eval(examples):
inputs, targets = [], []
for i in range(len(examples[prompt_column])):
if examples[prompt_column][i] and examples[response_column][i]:
query = examples[prompt_column][i]
if history_column is None or len(examples[history_column][i]) == 0:
prompt = query
else:
prompt = ""
history = examples[history_column][i]
for turn_idx, (old_query, response) in enumerate(history):
prompt += "[Round {}]\n问:{}\n答:{}\n".format(turn_idx, old_query, response)
prompt += "[Round {}]\n问:{}\n答:".format(len(history), query)
inputs.append(prompt)
targets.append(examples[response_column][i])
inputs = [prefix + inp for inp in inputs]
model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, truncation=True, padding=True)
labels = tokenizer(text_target=targets, max_length=max_target_length, truncation=True)
if data_args.ignore_pad_token_for_loss:
labels["input_ids"] = [
[(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
]
model_inputs["labels"] = labels["input_ids"]
return model_inputs
def preprocess_function_train(examples):
max_seq_length = data_args.max_source_length + data_args.max_target_length
model_inputs = {
"input_ids": [],
"labels": [],
}
for i in range(len(examples[prompt_column])):
if examples[prompt_column][i] and examples[response_column][i]:
query, answer = examples[prompt_column][i], examples[response_column][i]
if history_column is None:
prompt = query
else:
prompt = ""
history = examples[history_column][i]
for turn_idx, (old_query, response) in enumerate(history):
prompt += "[Round {}]\n问:{}\n答:{}\n".format(turn_idx, old_query, response)
prompt += "[Round {}]\n问:{}\n答:".format(len(history), query)
prompt = prefix + prompt
a_ids = tokenizer.encode(text=prompt, add_special_tokens=False)
b_ids = tokenizer.encode(text=answer, add_special_tokens=False)
if len(a_ids) > data_args.max_source_length - 1:
a_ids = a_ids[: data_args.max_source_length - 1]
if len(b_ids) > data_args.max_target_length - 2:
b_ids = b_ids[: data_args.max_target_length - 2]
input_ids = tokenizer.build_inputs_with_special_tokens(a_ids, b_ids)
context_length = input_ids.index(tokenizer.bos_token_id)
mask_position = context_length - 1
labels = [-100] * context_length + input_ids[mask_position+1:]
pad_len = max_seq_length - len(input_ids)
input_ids = input_ids + [tokenizer.pad_token_id] * pad_len
labels = labels + [tokenizer.pad_token_id] * pad_len
if data_args.ignore_pad_token_for_loss:
labels = [(l if l != tokenizer.pad_token_id else -100) for l in labels]
model_inputs["input_ids"].append(input_ids)
model_inputs["labels"].append(labels)
return model_inputs
def print_dataset_example(example):
print("input_ids",example["input_ids"])
print("inputs", tokenizer.decode(example["input_ids"]))
print("label_ids", example["labels"])
print("labels", tokenizer.decode(example["labels"]))
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = raw_datasets["train"]
if data_args.max_train_samples is not None:
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
train_dataset = train_dataset.select(range(max_train_samples))
with training_args.main_process_first(desc="train dataset map pre-processing"):
train_dataset = train_dataset.map(
preprocess_function_train,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on train dataset",
)
print_dataset_example(train_dataset[0])
if training_args.do_eval:
max_target_length = data_args.val_max_target_length
if "validation" not in raw_datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_dataset = raw_datasets["validation"]
if data_args.max_eval_samples is not None:
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
eval_dataset = eval_dataset.select(range(max_eval_samples))
with training_args.main_process_first(desc="validation dataset map pre-processing"):
eval_dataset = eval_dataset.map(
preprocess_function_eval,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on validation dataset",
)
print_dataset_example(eval_dataset[0])
if training_args.do_predict:
max_target_length = data_args.val_max_target_length
if "test" not in raw_datasets:
raise ValueError("--do_predict requires a test dataset")
predict_dataset = raw_datasets["test"]
if data_args.max_predict_samples is not None:
max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
predict_dataset = predict_dataset.select(range(max_predict_samples))
with training_args.main_process_first(desc="prediction dataset map pre-processing"):
predict_dataset = predict_dataset.map(
preprocess_function_eval,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on prediction dataset",
)
print_dataset_example(predict_dataset[0])
# Data collator
label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
data_collator = DataCollatorForSeq2Seq(
tokenizer,
model=model,
label_pad_token_id=label_pad_token_id,
pad_to_multiple_of=None,
padding=False
)
# Metric
def compute_metrics(eval_preds):
preds, labels = eval_preds
if isinstance(preds, tuple):
preds = preds[0]
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
if data_args.ignore_pad_token_for_loss:
# Replace -100 in the labels as we can't decode them.
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
score_dict = {
"rouge-1": [],
"rouge-2": [],
"rouge-l": [],
"bleu-4": []
}
for pred, label in zip(decoded_preds, decoded_labels):
hypothesis = list(jieba.cut(pred))
reference = list(jieba.cut(label))
rouge = Rouge()
scores = rouge.get_scores(' '.join(hypothesis) , ' '.join(reference))
result = scores[0]
for k, v in result.items():
score_dict[k].append(round(v["f"] * 100, 4))
bleu_score = sentence_bleu([list(label)], list(pred), smoothing_function=SmoothingFunction().method3)
score_dict["bleu-4"].append(round(bleu_score * 100, 4))
for k, v in score_dict.items():
score_dict[k] = float(np.mean(v))
return score_dict
# Override the decoding parameters of Seq2SeqTrainer
# training_args.generation_max_length = (
# training_args.generation_max_length
# if training_args.generation_max_length is not None
# else data_args.val_max_target_length
# )
# training_args.generation_num_beams = (
# data_args.num_beams if data_args.num_beams is not None else training_args.generation_num_beams
# )
# Initialize our Trainer
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics if training_args.predict_with_generate else None,
save_prefixencoder=model_args.pre_seq_len is not None
)
# Training
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
# elif last_checkpoint is not None:
# checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
# trainer.save_model() # Saves the tokenizer too for easy upload
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation
results = {}
max_seq_length = data_args.max_source_length + data_args.max_target_length + 1
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate(metric_key_prefix="eval", do_sample=True, top_p=0.7, max_length=max_seq_length, temperature=0.95)
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
if training_args.do_predict:
logger.info("*** Predict ***")
predict_results = trainer.predict(predict_dataset, metric_key_prefix="predict", max_length=max_seq_length, do_sample=True, top_p=0.7, temperature=0.95)
metrics = predict_results.metrics
max_predict_samples = (
data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
)
metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))
trainer.log_metrics("predict", metrics)
trainer.save_metrics("predict", metrics)
if trainer.is_world_process_zero():
if training_args.predict_with_generate:
predictions = tokenizer.batch_decode(
predict_results.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
predictions = [pred.strip() for pred in predictions]
labels = tokenizer.batch_decode(
predict_results.label_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
labels = [label.strip() for label in labels]
output_prediction_file = os.path.join(training_args.output_dir, "generated_predictions.txt")
with open(output_prediction_file, "w", encoding="utf-8") as writer:
for p, l in zip(predictions, labels):
res = json.dumps({"labels": l, "predict": p}, ensure_ascii=False)
writer.write(f"{res}\n")
return results
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()

28
ptuning/parallel_train.sh Normal file
View File

@ -0,0 +1,28 @@
PRE_SEQ_LEN=128
LR=2e-2
CUDA_VISIBLE_DEVICES=1,2 python3 main_parallel.py \
--do_train \
--train_file AdvertiseGen/train.json \
--test_file AdvertiseGen/dev.json \
--prompt_column content \
--response_column summary \
--preprocessing_num_workers 10 \
--overwrite_cache \
--model_name_or_path THUDM/chatglm-6b \
--output_dir ./output/parallel-chatglm-6b-ptuning-$LR \
--overwrite_output_dir \
--max_source_length 64 \
--max_target_length 64 \
--per_device_train_batch_size 2 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 1 \
--predict_with_generate \
--max_steps 1000 \
--logging_steps 10 \
--save_steps 1000 \
--learning_rate $LR \
--pre_seq_len $PRE_SEQ_LEN \
--save_total_limit 1 \
--gradient_checkpointing \
--fp16

View File

@ -3,10 +3,12 @@ LR=2e-2
CUDA_VISIBLE_DEVICES=0 python3 main.py \
--do_train \
--fp16 \
--train_file AdvertiseGen/train.json \
--validation_file AdvertiseGen/dev.json \
--prompt_column content \
--response_column summary \
--preprocessing_num_workers 10 \
--overwrite_cache \
--model_name_or_path THUDM/chatglm-6b \
--output_dir output/adgen-chatglm-6b-pt-$PRE_SEQ_LEN-$LR \
@ -21,6 +23,5 @@ CUDA_VISIBLE_DEVICES=0 python3 main.py \
--logging_steps 10 \
--save_steps 1000 \
--learning_rate $LR \
--pre_seq_len $PRE_SEQ_LEN \
--quantization_bit 4
--pre_seq_len $PRE_SEQ_LEN
# --quantization_bit 4

File diff suppressed because it is too large Load Diff

View File

@ -12,22 +12,68 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, List, Optional, Tuple, Union
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import os
import torch
from torch import nn
from torch.utils.data import Dataset
from transformers.data.data_collator import DataCollator
from transformers.deepspeed import is_deepspeed_zero3_enabled
from trainer import Trainer
from transformers.trainer_utils import PredictionOutput
from transformers import Trainer
from transformers.modeling_utils import PreTrainedModel, unwrap_model, WEIGHTS_NAME
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_callback import TrainerCallback
from transformers.trainer_utils import EvalPrediction, PredictionOutput
from transformers.training_args import TrainingArguments
from transformers.utils import logging
logger = logging.get_logger(__name__)
TRAINING_ARGS_NAME = "training_args.bin"
class Seq2SeqTrainer(Trainer):
def __init__(self, save_prefixencoder=None, **kwargs):
super().__init__(**kwargs)
self.save_prefixencoder = save_prefixencoder
def _save(self, output_dir: Optional[str] = None, state_dict=None):
# If we are executing this function, we are the process zero, so we don't check for that.
output_dir = output_dir if output_dir is not None else self.args.output_dir
os.makedirs(output_dir, exist_ok=True)
logger.info(f"Saving model checkpoint to {output_dir}")
# Save a trained model and configuration using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
if not isinstance(self.model, PreTrainedModel):
if isinstance(unwrap_model(self.model), PreTrainedModel):
if state_dict is None:
state_dict = self.model.state_dict()
unwrap_model(self.model).save_pretrained(output_dir, state_dict=filtered_state_dict)
else:
logger.info("Trainer.model is not a `PreTrainedModel`, only saving its state dict.")
if state_dict is None:
state_dict = self.model.state_dict()
torch.save(state_dict, os.path.join(output_dir, WEIGHTS_NAME))
else:
if self.save_prefixencoder:
print("Saving PrefixEncoder")
state_dict = self.model.state_dict()
filtered_state_dict = {}
for k, v in self.model.named_parameters():
if v.requires_grad:
filtered_state_dict[k] = state_dict[k]
self.model.save_pretrained(output_dir, state_dict=filtered_state_dict)
else:
print("Saving the whole model")
self.model.save_pretrained(output_dir, state_dict=state_dict)
if self.tokenizer is not None:
self.tokenizer.save_pretrained(output_dir)
# Good practice: save your training arguments together with the trained model
torch.save(self.args, os.path.join(output_dir, TRAINING_ARGS_NAME))
def evaluate(
self,
eval_dataset: Optional[Dataset] = None,

View File

@ -1,8 +1,13 @@
protobuf
transformers==4.27.1
transformers==4.32.0
cpm_kernels
torch>=1.10
gradio
mdtex2html
sentencepiece
accelerate
accelerate
datasets
jieba
rouge_chinese
deepspeed