You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ChatGLM-6B/web_demo2.py

56 lines
1.6 KiB

from transformers import AutoModel, AutoTokenizer
import streamlit as st
from streamlit_chat import message
st.set_page_config(
page_title="ChatGLM-6b 演示",
page_icon=":robot:"
)
@st.cache_resource
def get_model():
tokenizer = AutoTokenizer.from_pretrained("/THUDM/chatglm-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
model = model.eval()
return tokenizer, model
MAX_TURNS = 20
MAX_BOXES = MAX_TURNS * 2
def predict(input, history=None):
tokenizer, model = get_model()
if history is None:
history = []
response, history = model.chat(tokenizer, input, history)
#updates = []
for i, (query, response) in enumerate(history):
#updates.append("用户:" + query)
message(query, avatar_style="big-smile", key=str(i) + "_user")
#updates.append("ChatGLM-6B" + response)
message(response, avatar_style="bottts", key=str(i))
# if len(updates) < MAX_BOXES:
# updates = updates + [""] * (MAX_BOXES - len(updates))
return history
# create a prompt text for the text generation
prompt_text = st.text_area(label="用户命令输入",
height = 100,
placeholder="请在这儿输入您的命令")
if 'state' not in st.session_state:
st.session_state['state'] = []
if st.button("发送", key="predict"):
with st.spinner("AI正在思考请稍等........"):
# text generation
st.session_state["state"] = predict(prompt_text, st.session_state["state"])
st.balloons()